A short introduction to rough paths

Antoine Lejay (IECL \& Inria, Nancy)

Rencontres Mathématiques de Rouen - 20-22 juin 2018

Rough paths

What? A theory to define integrals/diff eq. driven by irregular paths

$$
y_{t}=a+\int_{0}^{t} f\left(y_{s}\right) d x_{s}
$$

such that " $x \mapsto y$ " is continuous.

Why? To

- define pathwise SDE
- extend SDE to other noises than Brownian ones (fractional, ...)
- develop numerical schemes
- perform machine learning task, ...

Who, When and Where? T. Lyons at Oxford U. in 1998, now worldwide (France, Germany, Japan, ...).

- I-

The intuition behind the rough paths theory: the role of the Lévy area

Stratonovich integrals
Itô/Stratonovich integrals cannot be defined pathwise.

$$
\begin{array}{rl}
\int_{0}^{T} & f\left(B_{s}\right) \circ \mathrm{d} B_{s} \\
& =\mathbb{P}-\lim _{[u, v] \in \pi} \frac{f\left(B_{u}\right)+f\left(B_{v}\right)}{2}\left(B_{v}-B_{u}\right) \quad \text { (Riemann type) } \\
& =\mathbb{P}-\lim \int_{0}^{T} f\left(B_{s}^{\pi}\right) \mathrm{d} B_{s}^{\pi} \tag{Wong-Zakai}
\end{array}
$$

where B^{π} piecewise linear approximation of B along dyadic partitions π.

Stratonovich integrals

$B d$-dimensional BM with increments $B_{s, t}:=B_{t}-B_{s}$
Define

$$
K_{[s, t]}^{i, j}=\int_{s}^{t}\left(B_{r}^{i}-B_{s}^{i}\right) \circ \mathrm{d} B_{r}^{j}=A_{[s, t]}^{i, j}+S_{[s, t]}^{i, j}
$$

Define also

$$
\begin{cases}A_{[s, t]}^{i, j}:=\frac{1}{2}\left(K_{[s, t]}^{i, j}-K_{[s, t]}^{j, i}\right) & \text { Lévy area } \\ S_{[s, t]}^{i, j}:=\frac{1}{2} B_{s, t}^{i} \times B_{s, t}^{j} & \text { symmetric part }\end{cases}
$$

The symmetric part $S_{[s, t]}$ is a function of the increment $B_{s, t}$, unlike $A_{[s, t]}$.

Stratonovich integrals

Recall that

$$
\begin{aligned}
& \int_{0}^{T} f\left(B_{s}\right) \circ \mathrm{d} B_{s}=\mathbb{P}-\lim _{[u, v] \in \pi} \frac{f\left(B_{u}\right)+f\left(B_{v}\right)}{2}\left(B_{v}-B_{u}\right) \\
= & \mathbb{P}-\lim _{[u, v] \in \pi}+f\left(B_{u}\right)\left(B_{v}-B_{u}\right)+\frac{f\left(B_{v}\right)-f\left(B_{u}\right)}{2}\left(B_{v}-B_{u}\right)
\end{aligned}
$$

With the Newton formula (think Stratonovich)

$$
\begin{aligned}
f_{j}\left(B_{v}\right)-f_{j}\left(B_{u}\right) & =\sum_{i=1}^{d} \int_{u}^{v} \partial_{i} f_{j}\left(B_{r}\right) \circ \mathrm{d} B_{r}^{i} \\
& =\sum_{i=1}^{d} \partial_{i} f_{j}\left(B_{u}\right) B_{u, v}^{i}+\text { rem } \\
\Longrightarrow f_{j}(B)_{u, v} B_{u, v}^{j} & =\sum_{i=1}^{d} \partial_{i} f_{j}\left(B_{u}\right) S_{[u, v]}^{i, j}+\text { rem }
\end{aligned}
$$

Stratonovich integrals

$$
\begin{aligned}
& I_{\pi}=\sum_{[u, v] \in \pi}\left(f\left(B_{u}\right) B_{u, v}+\partial_{j} f_{i}\left(B_{u}\right) K^{i, j}{ }_{[u, v]}\right) \\
& =\underbrace{\sum_{[u, v] \in \pi} f\left(B_{u}\right)\left(B_{v}-B_{u}\right)+\frac{1}{2}\left(f\left(B_{v}\right)-f\left(B_{u}\right)\right) B_{u, v}}_{\text {Stratonovich approx. }}+\text { rem. } \\
& +\underbrace{\sum_{[u, v] \in \pi} \partial_{j} f_{i}\left(B_{u}\right) A_{[u, v]}^{i, j}}_{\rightarrow 0 \text { in prob. due to a martingale arg }}
\end{aligned}
$$

The theory of rough paths shows that I_{π} converges almost surely. The theory also endows the primary role of the Lévy area.

The role played by the Lévy area
B^{π} piecewise linear interpolation of the Brownian motion

$$
\begin{aligned}
& I_{\pi}=\sum_{[u, v] \in \pi}\left(f\left(B_{u}\right) B_{u, v}+\partial_{j} f_{i}\left(B_{u}\right) K_{[u, v]}^{i, j}\right) \\
& \quad=\int_{0}^{T} f\left(B_{s}^{\pi}\right) \mathrm{d} B_{s}^{\pi}+\operatorname{rem} \underset{|\pi| \rightarrow 0}{ } \int_{0}^{T} f\left(B_{s}\right) \circ \mathrm{d} B_{s}
\end{aligned}
$$

Choose $d=2$ and $\phi \in \mathcal{C}^{1}([0, T], \mathbb{R})$.
Use another family of approximation of B along π s.t.

$$
\mathbb{E}\left[A^{1,2}\left(B^{\pi}\right)_{[u, v]} \mid \mathcal{F}_{u}^{\pi}\right]=-\mathbb{E}\left[A^{2,1}\left(B^{\pi}\right)_{[u, v]} \mid \mathcal{F}_{u}^{\pi}\right] \approx \phi_{u, v}
$$

Then (McShane 1972)

$$
I_{\pi} \xrightarrow[|\pi| \rightarrow 0]{\longrightarrow} \int_{0}^{T} f\left(B_{s}\right) \circ \mathrm{d} B_{s}+\frac{1}{2} \int_{0}^{T}\left(\partial_{1} f_{2}-\partial_{2} f_{1}\right)\left(B_{s}\right) \mathrm{d} \phi_{s}
$$

Smooth paths converging to smooth paths
This is not related to the regularity of the path itself, but to the regularity of the approximating sequence.

- $x \in \mathcal{C}^{1}\left([0, T], \mathbb{R}^{2}\right)$
- extra (=arbitrary) $\phi \in \mathcal{C}^{1}([0, T], \mathbb{R})$
- $x^{\pi}=x+$ loops of area $\phi_{u, v}$
- $f=\left(f_{1}, f_{2}\right)$ smooth differential form

Smooth paths converging to smooth paths
This is not related to the regularity of the path itself, but to the regularity of the approximating sequence.

- $x \in \mathcal{C}^{1}\left([0, T], \mathbb{R}^{2}\right)$
- extra (=arbitrary) $\phi \in \mathcal{C}^{1}([0, T], \mathbb{R})$
- $x^{\pi}=x+$ loops of area $\phi_{u, v}$
- $f=\left(f_{1}, f_{2}\right)$ smooth differential form

$$
\begin{aligned}
\int_{x^{\pi}} f= & \int_{x} f+\sum_{[u, v] \in \pi} \int_{\text {loop }} f \stackrel{\text { Gauss-Green }}{=} \int_{x} f+\sum_{\substack{[u, v] \in \pi}} \iint_{\text {area of }}^{\text {the loop }}
\end{aligned} \mathrm{d} f \text { f } \begin{aligned}
& \approx \int_{x} f+\sum_{[u, v] \in \pi}\left(\partial_{1} f_{2}-\partial_{2} f_{1}\right)\left(x_{u}\right) \phi_{v, u} \\
& \xrightarrow[|\pi| \rightarrow 0]{\longrightarrow} \int_{x} f+\int\left(\partial_{1} f_{2}-\partial_{2} f_{1}\right)\left(x_{s}\right) \mathrm{d} \phi_{s}=: \int_{(x, \phi)} f
\end{aligned}
$$

It's not a bug, its a feature!

- x^{π} converges uniformly to x.
\Rightarrow The map $x \mapsto \int_{x} f$ is not continuous w.r.t $\|\cdot\|_{\infty}$.
- Each x^{π} converges to x wrt $\|\cdot\|_{\alpha}$ with $\alpha<1 / 2$ (Hölder norm).
- The arbitrary function ϕ corresponds to some exogenous information (called the Lévy area, not necessarily the natural one).
\Rightarrow As $\int_{(x, \phi)} f=\lim \int_{x^{\pi}} f$, we identify (x, ϕ) with $\left\{x^{\pi}\right\}_{\pi}$.
- Similarly, when x is irregular, $x \in \mathcal{C}^{\alpha}, 1 / 3<\alpha \leqslant 1 / 2$, we identify it with $\left\{x^{\pi}\right\}_{\pi}, x^{\pi} \in \mathcal{C}^{1}$ with a prescribed area on $[u, v] \in \pi$.
- The Stratonovich integral corresponds to the natural choice of the Lévy area which statistically disappear in the limit (the Itô integral too, using Itô integration).
- Different choices of $\phi /\left\{x^{\pi}\right\}_{\pi}$ lead to different integrals.

The intuition behind the theory of rough paths

The theory of rough paths lies on the fact that the Lévy area is THE information to define a continuous, natural extension of $x \mapsto \int f\left(x_{s}\right) \mathrm{d} x_{s}$ for $x \in \mathcal{C}^{\alpha}$, $1 / 3<\alpha \leqslant 1 / 2$.

A rough path \mathbf{x} is an enhanced path lying above x that includes such a data.

Once integrals are defined, we can define a consistent theory of differential equations as well.

It could be applied to many stochastic processes.
The theory itself is deterministic.

The roadmap

- II -

The technical core for integrals:
Young integrals
\&
the additive sewing lemma

Young integrals

Young, 1936/ $x \in \mathcal{C}^{\alpha}([0, T], \mathbb{R}), y \in \mathcal{C}^{\beta}([0, T], \mathbb{R}), \theta:=$ $\alpha+\beta>1$. The Young integral exists as a family bilinear maps

$$
(y, x) \mapsto \mathcal{Y}_{s, t}(y, x):=\int_{s}^{t} y_{r} \mathrm{~d} x_{r}
$$

with

- Chasles' property $\mathcal{Y}_{r, s}(y, x)+\mathcal{Y}_{s, t}(y, x)=\mathcal{Y}_{r, t}(y, x)$
- Regularity $t \mapsto \mathcal{Y}_{0, t}(y, x) \in \mathcal{C}^{\alpha}([0, T], \mathbb{R})$
- Main control

$$
\left|\mathcal{Y}_{s, t}(y, x)-y_{s} \cdot x_{s, t}\right| \leqslant K\|y\|_{\beta}\|x\|_{\alpha}(t-s)^{\theta}
$$

Rem. x, y could take their values in any Banach spaces U and V for which a continuous product $\mathrm{V} \times \mathrm{U} \mapsto \mathrm{W}$ exists.

The additive sewing lemma
Let us set $Y_{s, t}^{0}=y_{s} \cdot x_{s, t}$. Since $x_{s, r}+x_{s, t}=x_{s, t}$,

$$
Y_{r, s}^{0}+Y_{s, t}^{0}-Y_{s, r}^{0}=y_{r, s} \cdot x_{s, t}
$$

With $s=(t+r) / 2$, the midpoint,

$$
Y_{r, t}^{n+1}:=Y_{r, s}^{n}+Y_{s, t}^{n} .
$$

It holds that

$$
Y_{r, t}^{n+1}-Y_{r, t}^{n}=Y_{r, s}^{n}+Y_{s, t}^{n}-Y_{r, s}^{n-1}-Y_{s, t}^{n-1} .
$$

Set

$$
V^{n+1}(\delta):=\sup _{|t-s| \leqslant \delta}\left|Y_{s, t}^{n+1}-Y_{s, t}^{n}\right|
$$

to obtain

$$
V^{n+1}(\delta) \leqslant 2 V^{n}(\delta / 2) \leqslant 2^{n} V^{1}\left(\delta / 2^{n}\right)
$$

The additive sewing lemma

Since

$$
V^{1}(\delta) \leqslant \sup _{|t-r| \leqslant \delta}\left|y_{r, s}\right| \cdot\left|x_{s, t}\right| \leqslant\|y\|_{\beta} \cdot\|x\|_{\alpha} \delta^{\alpha+\beta}
$$

the sequence $\left(Y_{s, t}^{n}\right)_{n}$ is Cauchy since $(\theta:=\alpha+\beta>1)$

$$
V^{n+1}(\delta) \leqslant \frac{1}{2^{n(\theta-1)}}\|y\|_{\beta} \cdot\|x\|_{\alpha} \text { and } \sum_{n \geqslant 0} \frac{1}{2^{n(\theta-1)}}<+\infty
$$

With a bit more analysis,

- $Y_{s, t}^{n}$ converges to $Y_{s, t}^{\infty}$ for each (s, t) with

$$
Y_{r, s}^{\infty}+Y_{s, t}^{\infty}=Y_{r, t}^{\infty}, \quad \forall(r, s, t) .
$$

- For each (s, t),

$$
\left|Y_{s, t}^{\infty}-Y_{s, t}^{0}\right| \leqslant K\|y\|_{\beta} \cdot\|x\|_{\alpha}(t-s)^{\theta}
$$

- Y^{∞} is the only family satisfying (\$)-(\&).

The additive sewing lemma

- Y^{∞} is the Young integral. It satisfies

$$
Y_{s, t}^{\infty}=\lim _{|\pi| \rightarrow 0} \sum_{[u, v] \subset \pi \cap[s, t]} y_{u} \cdot x_{u, v}
$$

- There are several proofs for this results. They all follow the same general scheme. Here: D. Feyel, A. de la Pradelle \& G. Mokobodzki 2008.
- The exact form of Y^{0} does not matter. What matters is that

$$
\begin{gathered}
\quad\left|Y_{r, s, t}^{0}\right| \leqslant C \varpi\left(\omega_{r, t}\right) \text { with } Y_{r, s, t}^{0}:=Y_{r, s}^{0}+Y_{s, t}^{0}-Y_{s, t}^{0} \\
\text { and } \varpi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+} \text {increasing , } 2 \varpi\left(\frac{\delta}{2}\right) \leqslant \kappa \varpi(\delta), \kappa<1 .
\end{gathered}
$$

- The additive sewing lemma maps continuously $Y^{0} \mapsto Y^{\infty}$ with

$$
\left|Y_{s, t}^{\infty}-Y_{s, t}^{0}\right| \leqslant L C \varpi\left(\omega_{s, t}\right) \text { and } Y_{r, s, t}^{\infty}=0 .
$$

The discrete additive sewing lemma (alternative way)

A.M. Davie 2010/ Let $\left\{\phi_{i, j}\right\}_{i=0, \ldots, n}$ be such that

$$
\left|\phi_{i, j}+\phi_{j, k}-\phi_{i, k}\right| \leqslant A \varpi(k-i), \forall i \leqslant j \leqslant k .
$$

Then there exists $L>0$ (universal) large enough such that

$$
\left|\psi_{i, k}-\phi_{i, k}\right| \leqslant L \varpi(k-i) \text { with } \psi_{i, k}=\sum_{j=i}^{k-1} \phi_{j, j+1}
$$

Proof: Use a doubling argument in a recurrence over $k-i$ with L satisfying $\kappa L+A \leqslant L$ and a "midpoint" j :

$$
\psi_{i, k}-\phi_{i, k}=\underbrace{\underbrace{\psi_{i, j}-\phi_{i, j}}_{\leqslant L \varpi(k-j)}+\underbrace{\psi_{i, j}-\phi_{i, k}}_{\leqslant L \varpi(j-i)}}_{\leqslant \kappa L \varpi(k-i)}+\underbrace{\phi_{i, j, k}}_{\leqslant A \varpi(k-i)}
$$

- III -

Toward solving differential equations:
Young differential equations

The Omega lemma

Omega lemma, L. Coutin \& AL 2018/

- Let $f \in \mathcal{C}^{k+\gamma}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right), 0<\gamma \leqslant 1$ (f is k differentiable with bounded der. and $\nabla^{k} f \in \mathcal{C}^{\gamma}$).
- Set $\Omega f(x):=\left(f\left(x_{t}\right)\right)_{t \in[0, T]}$ for $x \in \mathcal{C}^{\alpha}\left([0, T], \mathbb{R}^{n}\right)$.
\Rightarrow If $k=0$ then $\Omega f: \mathcal{C}^{\alpha} \rightarrow \mathcal{C}^{\alpha \gamma}$.
\Rightarrow If $k>0$, then Ωf and is locally $\mathcal{C}^{k+\gamma(1-\kappa)}$-Hölder continuous from \mathcal{C}^{α} to $\mathcal{C}^{\alpha \kappa \gamma}$ for $0<\kappa<1$.

Corollary. If $f \in \mathcal{C}^{\gamma}$, then

$$
\mathcal{F}: x \in \mathcal{C}^{\alpha} \mapsto\left(\int_{0}^{t} f\left(x_{s}\right) \mathrm{d} x_{s}\right)_{t \in[0, T]} \in \mathcal{C}^{\alpha}
$$

is well defined and continuous provided that $\alpha(1+\gamma)>1$, hence $\alpha>1 / 2$ at best.

Stability of balls

We work with the following balls (relatively compact thanks to AscoliArzelà):

$$
B(r, R):=\left\{y \in \mathcal{C}^{\alpha}\left([0, T], \mathbb{R}^{d}\right)| | y_{0} \mid \leqslant r,\|y\|_{\alpha} \leqslant R\right\}
$$

We will adjust r, R and T.
When $y \in B(r, R)$,

$$
\|y\|_{\infty} \leqslant\left|y_{0}\right|+\|y\|_{\alpha} \underbrace{\substack{\text { offers some flexibility }}}
$$

Stability of balls

For $f \in \mathcal{C}^{k+\gamma}, k \geqslant 0$, bounded (to simplify) with bounded derivatives

$$
\beta=\left\{\begin{array}{ll}
\alpha \gamma & \text { if } k=0 \\
\alpha & \text { if } k \geqslant 1
\end{array} \text { and } \gamma^{\prime}= \begin{cases}\gamma & \text { if } k=0, \\
1 & \text { if } k \geqslant 1 .\end{cases}\right.
$$

Recall that Ωf

- maps \mathcal{C}^{α} to \mathcal{C}^{β}
- is $\mathcal{C}^{k+(1-\kappa) \gamma}$ from \mathcal{C}^{α} to $\mathcal{C}^{\kappa \beta}$.

Then

$$
\Omega f(B(r, R)) \subset B\left(r^{\prime}, R^{\prime}\right)
$$

with

$$
r^{\prime}=\|f\|_{\infty}+\|f\|_{\gamma^{\prime}} r^{\gamma^{\prime}} \text { and } R^{\prime}=\|f\|_{\gamma^{\prime}} R^{\gamma^{\prime}}
$$

Young differential equations

A Young differential equation is

$$
\begin{equation*}
y_{t}=a+\int_{0}^{t} f\left(y_{s}\right) \mathrm{d} x_{s}=a+\mathcal{Y}(\Omega f(y), x)_{t, t \in[0, T]} \tag{YDE}
\end{equation*}
$$

with the bilinear map

$$
\mathcal{Y}(z, x)_{t}=\int_{0}^{t} z_{s} \mathrm{~d} x_{s} \text { with } z \in \mathcal{C}^{\beta}, x \in \mathcal{C}^{\alpha}
$$

We then "seperate" the study of Ωf and \mathcal{Y} :

- Ωf is been studied through the Omega lemma.
- \mathcal{Y} is bilinear (hence \mathcal{C}^{∞}).
- We study (YDE) as functional, abstract equation.

Young differential equations

Fundamental inequality on Young integral

$$
\begin{gathered}
\left|\mathcal{Y}(z, x)_{s, t}-z_{s} \cdot x_{s, t}\right| \leqslant C\|z\|_{\beta} \times\|x\|_{\alpha}|t-s|^{\alpha+\beta} \\
\Longrightarrow\|\mathcal{Y}(z, x)\|_{\alpha} \leqslant\|z\|_{\infty} \cdot\|x\|_{\alpha}+C\|z\|_{\beta} \cdot\|x\|_{\alpha} T^{\beta} \\
\leqslant\left|z_{0}\right| \cdot\|x\|_{\alpha}+(1+C)\|z\|_{\beta} \cdot\|x\|_{\alpha} T^{\beta}
\end{gathered}
$$

If $z \in B\left(r_{z}, R_{z}\right), x \in B\left(r_{x}, R_{x}\right),|a| \leqslant r_{a}$ then

$$
\|a+\mathcal{Y}(z, x)\|_{\alpha} \leqslant r_{z} R_{x}+(1+C) R_{z} R_{x} T^{\beta} .
$$

If $y \in B\left(r_{y}, R_{y}\right)$, then $\Omega f(y) \in B\left(r_{z}, R_{z}\right)$ function of $\|f\|_{\infty}$ and $\|f\|_{\gamma^{\prime}}$.
Thus,

$$
R^{\prime}=\|a+\mathcal{Y}(\Omega f(y), z)\|_{\alpha} \leqslant r_{z} R_{x}+(1+C)\|f\|_{\gamma^{\prime}} R_{y}^{\gamma^{\prime}} R_{x} T^{\beta}
$$

We tune T to get $R^{\prime} \leqslant R_{y}$, and choose $r_{y} \geqslant|a|$.

Young differential equations: existence
So far, we have proved that

$$
y \in B\left(r_{y}, R_{y}\right) \Longrightarrow a+\mathcal{Y}(\Omega f(y), x) \in B\left(r_{y}, R_{y}\right)
$$

for a proper choice of T (short time) which depends on $r_{x}, R_{x},\|f\|_{\gamma^{\prime}}$ and $\|f\|_{\infty}$. We can easily pass from short time to any time.

Existence/

Let $f \in \mathcal{C}^{\gamma}, x \in \mathcal{C}^{\alpha}\left([0, T], \mathbb{R}^{d}\right), \alpha(1+\gamma)>1$. Then there exists a solution to

$$
y=a+\mathcal{Y}(\Omega f(y), x)
$$

thanks to a Schauder fixed point theorem.
This solution is not necessarily unique (A.M. Davie 2010).

Young differential equations: uniqueness When Ωf is Lipschitz continuous from \mathcal{C}^{α} to \mathcal{C}^{β}, when $y_{0}=z_{0}$,

$$
\begin{aligned}
\|\mathcal{Y}(\Omega f(y), x)-\mathcal{Y}(\Omega f(z), x)\|_{\alpha} & =\|\mathcal{Y}(\Omega f(y)-\Omega f(z), x)\|_{\alpha} \\
& \leqslant C\|f\|_{\text {Lip }}\|y\|_{\alpha} \cdot\|x\|_{\alpha} T^{\beta}
\end{aligned}
$$

Again, we may tune T to get a contractive operator $y \mapsto \mathcal{Y}(\Omega f(y), x)$.
Uniqueness/
When $f \in \mathcal{C}^{1+\gamma}, x \in \mathcal{C}^{\alpha}\left([0, T], \mathbb{R}^{d}\right), \alpha(1+\gamma)>1$, there exists a unique solution to

$$
y=a+\mathcal{Y}(\Omega f(y), x)
$$

thanks to a Banach fixed point theorem.
This works even in an infinite dimensional space.

Young differential equations: regularity

Assume that $\Omega f \in \mathcal{C}^{1+\lambda}$. The solution of the YDE is solution to the fixed point

$$
y=a+\mathcal{Y}(\Omega f(y), x)
$$

This solution is unique.
Def. The $\operatorname{map} \mathcal{I}: x \mapsto y$ is called the Itô map.
We use the Implicit Function Theorem to relate the regularity of Ωf to the one of $(a, f, x) \mapsto y$.

The Implicit Functions Theorem Let $\mathcal{F}(y, \lambda)$ be locally of class \mathcal{C}^{μ} wrt $(y, \lambda), \lambda$ is a parameter. Assume that for $\left(y_{0}, \lambda_{0}\right)$,

$$
\mathcal{F}\left(y_{0}, \lambda_{0}\right)=0
$$

and

$$
\mathrm{D}_{y} \mathcal{F}\left(y_{0}, \lambda_{0}\right) \text { is invertible. }
$$

Then \mathcal{F} is locally a \mathcal{C}^{μ}-diffeomorphism around from a neighborhood V of $\left(y_{0}, \lambda_{0}\right)$ to a neighborhood W of 0 with inverse \mathcal{G} satisfying

$$
\mathcal{F}(\mathcal{G}(w, \lambda), \lambda)=w, w \in W
$$

This theorem works in Banach spaces.

The Implicit Functions Theorem: Application to YDE We consider

$$
y=a+\mathcal{Y}(\Omega f(y), x)+b \text { with } x, b \in \mathcal{C}^{\alpha}, f \in \mathcal{C}^{1+\gamma}
$$

The parameters are $\lambda=(a, f, x, b)$.
The $\operatorname{map} \mathcal{F}: \mathcal{C}^{\alpha} \rightarrow \mathcal{C}^{\alpha}$ is then

$$
\mathcal{F}(y, \lambda)=y-a-\mathcal{Y}(\Omega f(y), x)-b
$$

Showing that

$$
\mathrm{D}_{y} \mathcal{F}(y, \lambda) \cdot z=z-\mathcal{Y}\left(\Omega \mathrm{D}_{y} f(y) \cdot z, x\right)
$$

is invertible around a given (a, f, x, b) is equivalent in solving the linear YDE

$$
z-\mathcal{Y}\left(\Omega \mathrm{D}_{y} f(y) \cdot z, x\right)=d
$$

for any $d \in \mathcal{C}^{\alpha}$. This is always possible.

Young differential equations: regularity

Main idea: The regularity of $(a, x, f, b) \mapsto y$ depends on the regularity of Ωf.

Regularity, L. Coutin \& AL 2018/

Let $f \in \mathcal{C}^{1+\gamma}, x, b \in \mathcal{C}^{\alpha}\left([0, T], \mathbb{R}^{d}\right), \alpha(1+\gamma)>1$.
The map $(a, f, x, b) \mapsto y$ with y solution to

$$
y=a+\mathcal{Y}(\Omega f(y), x)+b
$$

is locally of class $\mathcal{C}^{1+(1-\kappa) \gamma}$ wrt all its parameters.

To summarize (Young case $1 / 2<\alpha \leqslant 1$)

"Cauchy-Lipschitz"
uniqueness
Lipschitz flow
conv. of Euler scheme

YDE

$$
\begin{gathered}
f \in \mathcal{C}^{\gamma} \\
\alpha(1+\gamma)>1 \\
\text { sol in } \mathcal{C}^{\alpha}
\end{gathered}
$$

$$
\begin{gathered}
f \in \mathcal{C}^{1+\gamma} \\
\alpha(1+\gamma)>1 \\
\Rightarrow \mathcal{I}: \mathcal{C}^{\alpha} \rightarrow \mathcal{C}^{\alpha} \\
f \in \mathcal{C}^{k+\gamma} \Rightarrow \mathcal{I} \in \mathcal{C}^{k+\epsilon \gamma}
\end{gathered}
$$

- This classification is essentially sharp.
- Several solution may exists unless $f \in \mathcal{C}^{1+\gamma}$ (Davie 2010).
- Global solution (any time horizon) exists.
- A measurable flow may exists even when the solution is not unique (A. Brault \& AL 2018).
- IV -

Young differential equations: convergence of numerical approximations

Discrete YDE

The above approaches work verbatim when \mathcal{Y} is replaced by the discrete integral

$$
\mathcal{Y}_{\pi}(y, x)=\sum_{\pi} y_{u} \cdot x_{u, v} \text { for }(y, x) \in \mathcal{C}_{\pi}^{\beta} \times \mathcal{C}_{\pi}^{\alpha}
$$

and \mathcal{C}^{α} is replaced by

$$
\mathcal{C}_{\pi}^{\alpha}=\left\{y: \pi \rightarrow \mathbb{R}^{m}\right\}
$$

with

$$
\|y\|_{\alpha}=\sup _{\substack{s, t \in \pi \\ s<t}} \frac{\left|y_{t}-y_{s}\right|}{(t-s)^{\alpha}}
$$

and

$$
\Omega f(y)=\left\{f\left(y_{s}\right) \mid s \in \pi\right\} .
$$

Why considering discrete YDE?

When y^{π} is a fixed point,

$$
y^{\pi}=a+\mathcal{Y}_{\pi}\left(\Omega f\left(y^{\pi}\right), x\right)
$$

then for $[u, v] \in \pi$,

$$
y_{v}^{\pi}-y_{u}^{\pi}=f\left(y_{u}^{\pi}\right) \cdot x_{u, v}
$$

Thus, when $\pi=\left\{t_{0}<t_{1}<\cdots<t_{m}\right\}, y^{\pi}$ is constructed iteratively by

$$
y_{i+1}^{\pi}=y_{i}^{\pi}+f\left(y_{i}^{\pi}\right) \cdot x_{i, i+1}, y_{0}^{\pi}=a
$$

with the convention $z_{i}:=z_{t_{i}}$.
The fixed point is explicitly constructed through a numerical, explicit scheme (Euler scheme). Using controls uniform in π, the AscoliArzelà theorem replaces the Schauder/Banach fixed point theorem.

Why considering discrete YDE?

Euler scheme / A.M. Davie 2010

For $f \in \mathcal{C}^{\gamma}$ and $x \in \mathcal{C}^{\alpha}$ with $\alpha(1+\gamma)>1$, there exists a constant L depending only on $\|x\|_{\alpha}, T$ and $\|f\|_{\gamma}$ such that

$$
\left|y_{t}^{\pi}-y_{s}^{\pi}-f\left(y_{s}^{\pi}\right) \cdot x_{s, t}\right| \leqslant L|t-s|^{\alpha(1+\gamma)}, \forall s \leqslant t,(s, t) \in \pi
$$

for any partition π.
Therefore, any limit of $\left\{y^{\pi}\right\}$ satisfies

$$
\left|y_{t}-y_{s}-f\left(y_{s}\right) \cdot x_{s, t}\right| \leqslant L|t-s|^{\alpha(1+\gamma)}, \forall s \leqslant t
$$

Consequences of the construction of A.M. Davie

1. (C) may serve as an alternative definition of solution.
2. When $f \in \mathcal{C}^{1+\gamma}$, the Euler scheme is locally $\mathcal{C}^{1+\lambda}, \lambda<\gamma$ wrt the parameters.
3. When $f \in \mathcal{C}^{1+\gamma}$, existence and uniqueness may be proved in the infinite dimensional setting.
4. When $f \in \mathcal{C}^{1+\gamma}$, the rate of convergence of y^{π} toward y may be quantified.
5. The construction encompasses the importance of the approximation of the flow (developed later)

$$
\phi_{t, s}(a)=a+f(a) \cdot x_{s, t}
$$

6. When $f \in \mathcal{C}^{1+\gamma}$, a flow of $\mathcal{C}_{\text {loc }}^{1+\lambda}$-diffeomorphism exists, that is a family $\psi_{t, s}$ with

$$
\psi_{t, s}\left(\psi_{s, r}(a)\right)=\psi_{t, r}(a) \text { and }\left|\psi_{t, s}(a)-\phi_{t, s}(a)\right| \leqslant C|t-s|^{\alpha(1+\gamma)}
$$

$-\mathrm{V}-$
Multiplicative functionals:
From Chen series to rough paths

Linear equations and multiplicative functionals

- $(\mathfrak{B},+, \cdot)$ Banach algebra (\equiv vector space with a product), 1 unit element, $\|a b\| \leqslant\|a\| \times\|b\|$
Example: Space of linear, bounded operators
- $\alpha>1 / 2, a \in \mathcal{C}^{\alpha}([0, T], \mathfrak{B})$.
- We consider the family of linear equations

$$
y_{r, t}=1+\int_{r}^{t} y_{r, s} d a_{s}, \forall r \leqslant t
$$

\Rightarrow Each $y_{r,} \in \mathcal{C}^{\alpha}([0, T], \mathfrak{B})$ is unique (Young differential equation).
\Rightarrow The multiplicative property is satisfied

$$
\begin{equation*}
y_{r, s} \cdot y_{s, t}=y_{r, t}, \quad \forall r \leqslant s \leqslant t \tag{MF}
\end{equation*}
$$

$\left\{y_{s, t}\right\}_{t, s}$ a is resolvent/propagator/semi-group

Multiplicative Young integrals
Let us set

$$
z_{t, s}=\pi_{s}^{t}\left(1+\mathrm{d} a_{r}\right):=\lim _{|\pi| \rightarrow 0} \prod_{[u, v] \in \pi \cap[s, t]}\left(1+a_{u, v}\right)
$$

Remark that

$$
\left|\left(1+a_{r, s}\right)\left(1+a_{s, t}\right)-\left(1+a_{r, t}\right)\right|=\left|a_{r, s} a_{s, t}\right| \leqslant\|a\|_{\alpha}(t-r)^{2 \alpha}
$$

Thanks to the Multiplicative Sewing Lemma (a variant of the Additive Sewing Lemma), z exists, is unique and satisfies

$$
\begin{gathered}
z_{r, s} \cdot z_{s, t}=z_{r, t}, \forall r \leqslant s \leqslant t \\
\left|z_{s, t}-1-a_{s, t}\right| \leqslant C(t-s)^{2 \alpha} .
\end{gathered}
$$

Multiplicative Young integrals
We have $y=z$ since

$$
\begin{aligned}
0=y_{r, t}-1 & -\int_{r}^{t} y_{s, r} \mathrm{~d} a_{s} \\
& =y_{s, r}\left(y_{s, t}-1-a_{s, t}\right)-\underbrace{\int_{s}^{t}\left(y_{r, u}-y_{r, s}\right) d a_{u}}_{|\cdot| \leqslant C(t-s)^{2 \alpha}}
\end{aligned}
$$

The solution of the linear equation $y_{r, t}=1+\int_{r}^{t} y_{r, s} d a_{s}$ is given by the multiplicative integral $y_{r, t}=\pi_{r}^{t}\left(1+\mathrm{d} a_{s}\right)$. Besides, $y_{r, s}$ is invertible in \mathfrak{B} with inverse

$$
z_{t, r}=1-\int_{r}^{t} \mathrm{~d} a_{s} \cdot z_{s, r} \text { and } z_{t, s} \cdot z_{s, r}=z_{t, r}
$$

A series à la Dyson

As $y_{s, s}=1$ and

$$
\begin{aligned}
& y_{r, t}=1+\int_{r}^{t} y_{r, u} \mathrm{~d} a_{u} \\
& \quad=y_{r, t}+a_{r, t}+\int_{r}^{t}\left(y_{r, s}-1\right) \mathrm{d} a_{s} \\
& =1+a_{r, t}+\int_{r}^{t} \int_{r}^{t_{1}} \mathrm{~d} a_{t_{2}} \mathrm{~d} a_{t_{1}}+\int_{r}^{t} \int_{r}^{t_{1}}\left(y_{s, t_{2}}-1\right) \mathrm{d} a_{t_{2}} \mathrm{~d} a_{t_{1}}
\end{aligned}
$$

$=$ infinite expansion in terms of iterated integrals of a
Using a Picard principle $y_{r, t}^{(n+1)}=1+\int_{r}^{t} y_{r, u}^{(n)} d a_{u}$ with $y_{r, t}^{(0)}=1$ leads to the same development.
Rem. $a_{t}=b \times t \Longrightarrow y_{r, t}=\sum_{k \geqslant 0} \frac{1}{k!} b^{k}(t-r)^{k}=e^{b(t-r)}$.

A remark on the importance of time

A and B are matrices

$$
\begin{aligned}
& a_{t}=\int_{0}^{t}\left(A_{[0,1]}(s)+B \mathbb{1}_{[0,1]}(s)\right) \mathrm{ds} \\
& a_{t}^{\prime}= \begin{cases}A & \text { if } t \in[0,1], \\
B & \text { if } t \in[1,2]\end{cases} \\
& y_{t}^{\prime}=y_{t} a_{t}^{\prime} \text { with } y_{0}=\mathrm{Id} \\
& \Longrightarrow y_{2}=\exp (A) \exp (B)
\end{aligned}
$$

$$
\begin{aligned}
& \widehat{a}_{t}=\int_{0}^{t}\left(B \mathbb{1}_{[0,1]}(s)+A \mathbb{1}_{[0,1]}(s)\right) \mathrm{d} s \\
& \widehat{a}_{t}^{\prime}= \begin{cases}B & \text { if } t \in[0,1], \\
A & \text { if } t \in[1,2]\end{cases} \\
& \widehat{y}_{t}^{\prime}=\widehat{y}_{t} \hat{a}_{t}^{\prime} \text { with } \widehat{y}_{0}=\mathrm{Id} \\
& \Longrightarrow \widehat{y}_{2}=\exp (B) \exp (A)
\end{aligned}
$$

A and B are seen as directions. In general

$$
\exp (A) \exp (B)=\exp \left(A \star_{\text {BCHD }} B\right)
$$

$$
\neq \exp (B) \exp (A)=\exp \left(B \star_{\text {BCHD }} A\right)
$$

Alhtough $a_{2}=\widehat{a}_{2}, y_{2} \neq \widehat{y}_{2}$: integrating linear equations is really sensitive to the order of the successive directions.

Tensor product and tensor algebra

1. Set $U=\mathbb{R}^{d}$ and $\left\{e_{i}\right\}_{i=1}^{d}$ its basis.
2. Set $U^{\otimes k}=U \otimes \cdots \otimes U$, a tensor product of spaces.
3. Roughly speaking, $\mathrm{U}^{\otimes k}$ is $U \times \cdots \times U$ with a vector space structure. A basis is

$$
e_{J}:=e_{i_{1}} \otimes \cdots \otimes e_{i_{k}} \text { with } J=i_{1} \cdots i_{k}, i_{j} \in\{1, \ldots, d\}
$$

4. J is a word with letters in the alphabet $\{1, \ldots, d\}$.
5. The tensor algebra is $\mathfrak{T}:=\mathbb{R} \oplus \cup \oplus U^{\otimes 2} \oplus \cdots$, the superposition of the tensor spaces $U^{\otimes k}$ (with $U^{\otimes 0}=\mathbb{R}$), with the addition + and product \otimes. It is naturally a graded space with a natural order for the elements. It is also a Banach algebra.
6. Set $\mathfrak{T}_{k}:=\mathbb{R} \oplus \mathrm{U} \oplus \mathrm{U}^{\otimes 2} \oplus \cdots \mathrm{U}^{\otimes k}$, the truncation of \mathfrak{T} up to order k (set the other elements of 0).
7. Alternatively, elements in \mathfrak{T} are manipulated as non-commutative series/polynomials with indeterminates e_{1}, \cdots, e_{d}.

Chen series / signature

- Let $x \in \mathcal{C}^{\alpha}\left([0, T], \mathbb{R}^{d}\right), \alpha>1 / 2$.
- Solve in the Banach algebra \mathfrak{T} the linear equation

$$
\mathbf{x}_{r, t}=1+\int_{r}^{t} \mathbf{x}_{r, s} \otimes \mathrm{~d} x_{s}, t \geqslant r .
$$

\Rightarrow The Chen series/signature is an expansion "à la Dyson":

$$
\begin{gathered}
\mathbf{x}_{r, t}=\sum_{k=0}^{+\infty} \mathbf{x}_{r, t}^{(k)} \text { with } \mathbf{x}_{r, t}^{(0)}=1 \text { in } \mathbb{R}, \mathbf{x}_{r, t}^{(1)}=x_{r, t} \text { in } \mathbb{R}^{d} \\
\text { and } \mathbf{x}_{r, t}^{(k)}=\sum_{J \text { with }|J|=k} e_{J} \int_{r}^{t} \mathrm{~d}^{J} x_{s} \\
\text { where } \int_{r}^{t} \mathrm{~d}^{i_{1} \cdots i_{k}} x_{s}:=\int_{r}^{t} \int_{r}^{t_{1}} \cdots \int_{r}^{t_{k-1}} \mathrm{~d} x_{t_{k}}^{i_{k}} \cdots \mathrm{~d} x_{t_{1}}^{i_{1}}
\end{gathered}
$$

Chen series: algebraic aspects

K.T. Chen '50, T. Lyons \& B. Hambly 2010 / The signature $\mathbf{x}_{s, t}$

 is in one-to-one (more or less) correspondence with a path $\left(x_{r}\right)_{r \in[s, t]}$ of finite variation.A geometric-algebraic dictionary
Concatenation

$$
\begin{gathered}
\mathbf{x}_{r, t}=\mathbf{x}_{r, s} \otimes \mathbf{x}_{s, t} \\
\mathbf{x}_{t, r}^{-1}=1-\int_{r}^{t} \mathrm{~d} x_{s} \otimes \mathbf{x}_{s, r}^{-1} \\
\text { series inversion in } \mathfrak{T}^{-1}
\end{gathered}
$$

Lie group and Lie algebra

$$
\mathbf{x}_{r, t}=\exp \left(\mathbf{y}_{r, t}\right)
$$

$$
\mathbf{y}_{r, t}=\sum_{l} a_{l} \int_{r}^{t} \mathrm{~d}^{\prime} x_{s}
$$

Chen series are paths with values in \mathfrak{T} (non-commutative)

$$
\mathbf{x}_{t}:=\mathbf{x}_{0, t} \text { so that } \mathbf{x}_{s, t}=\mathbf{x}_{s}^{-1} \otimes \mathbf{x}_{t} .
$$

Chen series: the second order term

 Let us consider a signature \mathbf{x} in \mathfrak{T}_{2} (truncated algebra up to order 2) above a path $x \in \mathcal{C}^{\alpha}\left([0, T], \mathbb{R}^{d}\right)$.- $\mathbf{x}_{t}^{(1)}=x_{t}$: this is the path.
- $\mathbf{x}_{t}^{(2)}$ takes its values in $\mathbb{R}^{d} \otimes \mathbb{R}^{d} \equiv \mathrm{M}_{d \times d}(\mathbb{R})$.
- We write

$$
\begin{aligned}
& \mathbf{s}_{s, t}^{i j}=\frac{1}{2}\left(\mathbf{x}_{s, t}^{(2), i j}+\mathbf{x}_{s, t}^{(2), j i}\right)=\frac{1}{2} x_{s, t}^{i} \times x_{s, t}^{j}, \quad \text { symmetric part } \\
& \mathbf{a}_{s, t}^{i j}=\frac{1}{2}\left(\mathbf{x}_{s, t}^{(2), i j}-\mathbf{x}_{s, t}^{(2), j i}\right), \text { anti-symmetric part }
\end{aligned}
$$

- The symmetric part $\mathbf{s}_{s, t}=\frac{1}{2} x_{s, t} \otimes x_{s, t}$ is constructed from the increments $x_{s, t}$.
- The multiplication rule $\mathbf{x}_{r, t}=\mathbf{x}_{r, s} \otimes \mathbf{x}_{s, t}$ implies

$$
\mathbf{a}_{r, t}^{i j}=\mathbf{a}_{r, s}^{i j}+\mathbf{a}_{s, t}^{i j}+\frac{1}{2} x_{r, s}^{i} \times x_{s, t}^{j}-\frac{1}{2} x_{r, s}^{j} \times x_{s, t}^{i} .
$$

a stands for "Antisymmetric", also for "Area".

Chen series: an illustration

Let us consider the path x with derivative

$$
\dot{x}_{t}= \begin{cases}e_{1} & \text { if } t \in[0,1] \\ e_{2} & \text { if } t \in[0,2]\end{cases}
$$

Thus $\mathbf{x}_{0,2}^{(1)}=x_{0,2}=e_{1}+e_{2} \equiv(1,1)$ and

$$
\begin{gathered}
\mathbf{x}_{0,2}^{(2, i j)}=\int_{0}^{2} x_{0, s}^{i} \mathrm{~d} x_{0, s}^{j} \\
\Longrightarrow \mathbf{x}_{0,2}^{(2)}=\frac{1}{2} e_{1} \otimes e_{1}+\frac{1}{2} e_{2} \otimes e_{2}+e_{1} \otimes e_{2} \equiv\left[\begin{array}{cc}
1 / 2 & 0 \\
1 & 1 / 2
\end{array}\right] .
\end{gathered}
$$

The anti-symmetric part is

$$
\mathbf{a}_{0,2}^{1,2}=-\mathbf{a}_{0,2}^{2,1}=\frac{1}{2}
$$

This is the algebraic area of the triangle $(0,0)(1,0)(1,1)$. If we exchange the order of e_{1} and $e_{2}, \mathbf{a}_{0,2}^{1,2}\left[e_{2}, e_{1}\right]=-1 / 2$.

Chen series: an illustration

Alternatively, we solve $\mathbf{x}_{0, t}=1+\int_{0}^{t} \mathbf{x}_{0, s} \otimes \mathrm{~d} x_{s}$:

$$
\begin{aligned}
& \text { For } t \in[0,1] \quad \mathbf{x}_{0, t}=1+\int_{0}^{t} \mathbf{x}_{0, s} \otimes e_{1}=\exp \left(e_{1}\right) \\
& \text { For } t \in[0,1] \quad \mathbf{x}_{1, t}=1+\int_{1}^{t} \mathbf{x}_{1, s} \otimes e_{2}=\exp \left(e_{2}\right)
\end{aligned}
$$

Using the multiplicative property,

$$
\begin{aligned}
& \mathbf{x}_{0,2}=\mathbf{x}_{0,1} \otimes \mathbf{x}_{1,2}=\exp \left(e_{1}\right) \otimes \exp \left(e_{2}\right) \\
& =1+e_{1}+e_{2}+\frac{1}{2} e_{1} \otimes e_{1}+\frac{1}{2} e_{2} \otimes e_{2}+e_{1} \otimes e_{2}+[\text { deg. } \geqslant 3]
\end{aligned}
$$

Let a be a direction such that $\exp (a)=\mathbf{x}_{0,2}$, then

$$
\begin{aligned}
& a=\log \left(\mathbf{x}_{0,2}\right)=x_{0, t}+\mathbf{a}_{0,2}^{1,2}\left[e_{1}, e_{2}\right]+\cdots \\
& \quad \text { with }\left[e_{1}, e_{2}\right]=e_{1} \otimes e_{2}-e_{2} \otimes e_{1} .
\end{aligned}
$$

\Longrightarrow The signature encodes the Lévy area: moving in the Euclidean plane creates displacement in the other directions.

What happens for irregular paths?
For a Chen series in \mathfrak{T}_{2} (truncated order $\leqslant 2$),
$\mathbf{x}_{s, t}=\mathbf{x}_{s, t}^{(\leqslant 2)}:=1+\mathbf{x}_{s, t}+\mathbf{x}_{s, t}^{(2)}$, with $\mathbf{x}_{s, t}^{(1)} \in \mathbb{R}^{d}, \mathbf{x}_{s, t}^{(2)} \in \mathbb{R}^{d} \otimes \mathbb{R}^{d}$.
Let us assume that we are given $\mathbf{x}^{(\leqslant 2)}$ with $1 / 3<\alpha \leqslant 1 / 2$, $\mathbf{x}_{s, t}^{(1)}=x_{s, t}:=x_{t}-x_{s},\left|x_{s, t}\right| \leqslant K(t-s)^{\alpha}$ and $\left|\mathbf{x}_{s, t}^{(2)}\right| \leqslant K(t-s)^{2 \alpha}$.

Could we reconstruct a whole Chen series in \mathfrak{T} ?

Apply the multiplicative sewing lemma in \mathfrak{T} (not \mathfrak{T}_{2})

$$
\begin{aligned}
\mathbf{x}_{r, s, t}^{(\leqslant 2)}:= & \mathbf{x}_{r, s}^{(\leqslant 2)} \otimes \mathbf{x}_{s, t}^{(\leqslant 2)}-\mathbf{x}_{s, t}^{(\leqslant 2)} \\
& =\underbrace{\mathbf{x}_{r, s}^{(1)} \otimes \mathbf{x}_{s, t}^{(2)}+\mathbf{x}_{r, s}^{(2)} \otimes \mathbf{x}_{s, t}^{(2)}+\mathbf{x}_{r, s}^{(2)} \otimes \mathbf{x}_{s, t}^{(1)}}_{\text {only terms of order } \geqslant 3} .
\end{aligned}
$$

$$
\Longrightarrow\left|\mathbf{x}_{r, s, t}^{(\leqslant 2)}\right| \leqslant 3 K(t-s)^{3 \alpha}
$$

The Lyons expansion theorem

T. Lyons 1998/ Knowing a path $\mathbf{x}^{(\leqslant k)}$ with values in $\mathfrak{T}_{k}=$ $\mathbb{R} \oplus \mathrm{U} \oplus \cdots \oplus \mathrm{U}^{\otimes k}$ satisfying

$$
\begin{gathered}
\mathbf{x}_{s, t}^{(\leqslant k, 1)}=x_{s, t}:=x_{t}-x_{s} \text { with } x \in \mathcal{C}^{\alpha}([0, T], U), \\
\left|\mathbf{x}_{s, t}^{(\leqslant k, i)}\right| \leqslant K(t-s)^{i \alpha}, i \leqslant k, \frac{1}{\alpha} \leqslant k+1
\end{gathered}
$$

is sufficient to construct a path \mathbf{x} with values in \mathfrak{T} with $\mathbf{x}^{(\leqslant k, i)}=\mathbf{x}^{(i)}, i \leqslant k$. Besides, $\mathbf{x}^{(\leqslant k)} \mapsto \mathbf{x}$ is continuous.

For $1 / 3<\alpha \leqslant 1 / 2$, we recover that the area \mathbf{a} is a necessary but hidden information. Knowing the path x itself is not sufficient unless $\alpha>1 / 2$.

What is a rough path?
Def: A rough path of order k above a path $x \in \mathcal{C}^{\alpha}\left([0, T], \mathbb{R}^{d}\right)$ is a path \mathbf{x} with values in \mathfrak{T}_{k} satisfying

$$
\begin{gathered}
\mathbf{x}_{s, t}^{(1)}=x_{s, t} \\
\left|\mathbf{x}_{s, t}^{(i)}\right| \leqslant K(t-s)^{i \alpha}, i \leqslant k, \frac{1}{\alpha} \leqslant k+1
\end{gathered}
$$

1. The are an infinite number of rough path above a path x :

$$
\mathbf{y}_{s, t}=\mathbf{x}_{s, t}+\phi_{t}-\phi_{s}, \forall \phi \in \mathcal{C}^{2 \alpha}\left([0, T], \mathbb{R}^{d} \otimes \mathbb{R}^{d}\right)
$$

is also a rough path above $x(1 / 3<\alpha \leqslant 1 / 2)$.
2. When $x \in \mathcal{C}^{\alpha}, 1 / 2<\alpha, \Lambda(x)_{t}=1+x_{t}+\int_{0}^{t} x_{0, r} \otimes \mathrm{~d} x_{r}$ is a rough path in \mathfrak{T}_{2}.
3. Rough paths x above $x \in \mathcal{C}^{\alpha}\left([0, T], \mathbb{R}^{d}\right)$ for which there exists $x^{n} \in \mathcal{C}^{\infty}\left([0, T], \mathbb{R}^{d}\right)$ with $\Lambda\left(x^{n}\right)$ converges to \mathbf{x} in $\mathcal{C}^{\beta}, \beta<\alpha$, are called geometric rough paths.
4. Not all rough paths are geometric ones (Itô vs Stratonovich).

1. A rough path is a path with values in a non-commutative, tensor space.
2. A rough path is a natural extension of truncated Chen series/signatures to irregular paths.
3. There exist an infinite number of rough paths above a given path.
4. There is no canonical way to construct a rough path above a given path, even if there are natural ones (it is however always possible, a non-trivial result: T. Lyons \& N. Victoir 2007, J. Unterberger 2010, M. Hairer 2013).
5. The signature translates geometric properties to algebraic ones.

- VI-

Rough Differential Equations:
The Davie's approach

Differential equations

- $x \in \mathcal{C}^{1}\left([0, T], \mathbb{R}^{d}\right)$
- $\mathbf{x}=\Phi(x)$, natural lift of x
- $f=\left(f_{1}, \ldots, f_{d}\right)$ smooth functions from \mathbb{R}^{d} to \mathbb{R}^{m}.

Differential equation driven by a path

$$
\begin{aligned}
& y_{t}=a+\int_{0}^{t} f\left(y_{s}\right) \mathrm{d} x_{s}=a+\sum_{i=1}^{d} \int_{0}^{t} f_{i}\left(y_{s}\right) \mathrm{d} x_{s}^{i} \\
& a, y_{t} \in \mathbb{R}^{m}
\end{aligned}
$$

This ODE may be thought as obtained by a "combination" of d flows with coefficients given by the speed \dot{x}_{t}^{i}.

Differential Equations

Newton formula \Longrightarrow for $g \in \mathcal{C}^{1}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$,

$$
\begin{aligned}
g^{k}\left(y_{t}\right) & =g^{k}(a)+\sum_{\substack{i=1, \ldots, d \\
j=1, \ldots, m}} \int_{0}^{t} \partial_{j} f_{i}^{j} g^{j}\left(y_{s}\right) \mathrm{d} x_{s}^{i}, \quad k=1, \ldots, m \\
g\left(y_{t}\right) & =g(a)+\int_{0}^{t} f g\left(y_{s}\right) \mathrm{d} x_{s}
\end{aligned}
$$

by identifying f with a vector field: for $g \in \mathcal{C}^{1}, b \in \mathbb{R}^{d}$,

$$
f g(a) \cdot b:=\sum_{\substack{j=1, \ldots, m \\ i=1, \ldots, d}} f_{i}^{j}(a) \partial_{j} g(a) b^{i}
$$

Thus, with $E=$ identity,

$$
\begin{aligned}
y_{t}=a & +f E(a) x_{0, t}+\int_{0}^{t}\left(f E\left(y_{s}\right)-f E(a)\right) \mathrm{d} x_{s} \\
& =a+f E(a) \mathbf{x}_{0, t}^{(1)}+f f E(a) \mathbf{x}_{0, t}^{(2)}+f f f E(a) \mathbf{x}_{0, t}^{(3)}+\cdots
\end{aligned}
$$

\Longrightarrow The solution y_{t} may be computed from the signature.

Rough differential equations: Davie's approach

The development suggests to set (with $E(a)=a$)

$$
\begin{gathered}
\phi_{t, s}(a)=f^{[0]}(a)+f^{[1]} \mathbf{x}_{s, t}^{(1)}+f f E(a) \mathbf{x}_{s, t}^{(2)} \\
\psi_{t, s}(a)=a+\phi_{t, s}(a) \\
\text { with } f^{[0]}=E, f^{[1]}=f E \text { and } f^{[2]}=f f E
\end{gathered}
$$

as an approximation of y_{t} when $y_{s}=a$ and $f \in \mathcal{C}^{1+\gamma}$ with bounded derivatives, $\alpha(2+\gamma)>1$.
Using $\mathbf{x}_{r, t}^{(2)}=\mathbf{x}_{r, s}^{(2)}+\mathbf{x}_{s, t}^{(2)}+\mathbf{x}_{r, s}^{(1)} \otimes \mathbf{x}_{s, t}^{(1)}$,

$$
\begin{aligned}
\psi_{t, s} \circ \psi_{s, r}(a) & =\overbrace{a+f^{[1]}(a) \mathbf{x}_{r, t}^{(1)}+f^{[2]}(a) \mathbf{x}_{r, t}^{(2)}}^{\psi_{t, r}(a)} \\
& +\left(f^{[2]}\left(\psi_{s, r}(a)\right)-f^{[2]}(a)\right) \mathbf{x}_{s, t}^{(2)} \\
& +\left(f^{[1]}\left(\psi_{s, r}(a)\right)-f^{[1]}(a)\right) \mathbf{x}_{s, t}^{(1)}-f^{[2]}(a) \mathbf{x}_{r, s}^{(1)} \otimes \mathbf{x}_{s, t}^{(1)} .
\end{aligned}
$$

Dealing with the green and red terms
Thus

$$
\left|\left(f^{[2]}\left(\psi_{s, r}(a)\right)-f^{[2]}(a)\right) \mathbf{x}_{s, t}^{(2)}\right| \leqslant C|t-r|^{(2+\gamma) \alpha} .
$$

Since $\mathbf{x}_{s, t}^{(1)}=x_{s, t}$,

$$
\begin{aligned}
& \left|\left(f^{[1]}\left(\phi_{s, r}(a)\right)-f^{[1]}(a)\right) \mathbf{x}_{s, t}^{(1)}-f^{[2]}(a) \mathbf{x}_{r, s}^{(1)} \otimes \mathbf{x}_{s, t}^{(1)}\right| \\
& \leqslant\left|\left(f^{[1]}\left(a+f^{[1]}(a) x_{r, s}\right)-f^{[1]}(a)\right) x_{s, t}-f^{[2]}(a) x_{r, s} \otimes x_{s, t}\right| \\
& +\underbrace{\left|\left(f^{[1]}\left(a+f^{[1]}(a) x_{r, s}\right)-f^{[1]}\left(\psi_{r, s}(a)\right)\right) x_{s, t}\right|}_{\leqslant C|t-r|^{3 \alpha} \odot}
\end{aligned}
$$

It remains to control the violet term.

Dealing with the violet term
With a Taylor development,

$$
\begin{aligned}
& \mid\left(\left(f^{[1]}\left(a+f^{[1]}(a) x_{r, s}\right)-f^{[1]}(a)\right) x_{s, t}-f^{[2]}(a) x_{r, s} \otimes x_{s, t} \mid\right. \\
= & \left|\int_{0}^{1} f^{[1]}\left(a+\tau f^{[1]}(a) x_{r, s}\right) f^{[1]}(a) x_{r, s} \otimes x_{s, t} \mathrm{~d} \tau-f^{[2]}(a) x_{r, s} \otimes x_{s, t}\right| \\
= & \left|\int_{0}^{1}\left(f^{[1]}\left(a+\tau f^{[1]}(a) x_{r, s}\right)-f^{[1]}(a)\right) f^{[1]}(a) x_{r, s} \otimes x_{s, t} \mathrm{~d} \tau\right| \\
& \left.\leqslant K|t-r|^{(2+\gamma) \alpha}\right)
\end{aligned}
$$

since $\left|x_{s, t}\right| \leqslant C|t-s|^{\alpha}$.
We have then proved that

$$
\left|\psi_{t, s, r}(a)\right|:=\left|\psi_{t, s} \circ \psi_{s, r}(a)-\psi_{t, r}(a)\right| \leqslant K|t-r|^{(2+\gamma) \alpha} ;
$$

RDE through the Davie approach

For a partition t_{i}, we set the Euler scheme

$$
y_{i+1}:=\psi_{i+1, i}\left(y_{i}\right) \text { where indice } i \text { means } t_{i}
$$

For $i<j<k$,

$$
\begin{aligned}
y_{k}- & \psi_{k, i}\left(y_{i}\right) \\
& =y_{k}-\psi_{k, j}\left(y_{j}\right)+\psi_{k, j}\left(y_{j}\right)-\psi_{k, j}\left(\psi_{j, i}(y)\right)+\psi_{k, j, i}\left(y_{i}\right)
\end{aligned}
$$

Thus,

$$
V_{k, i}:=\left|y_{k}-\psi_{k, i}\left(y_{i}\right)\right| \leqslant V_{k, j}+\left\|\psi_{k, j}\right\|_{L i p} V_{k, j}+K\left|t_{k}-t_{i}\right|^{(2+\gamma) \alpha}
$$

A variant of the discrete additive sewing lemma shows that

$$
\left|y_{k}-\psi_{k, i}\left(y_{i}\right)\right| \leqslant L\left|t_{k}-t_{i}\right|^{(2+\gamma) \alpha}, L \text { is uniform in } \pi
$$

RDE through the Davie approach

The solution of the Euler scheme $y_{i+1}=\psi_{i+1, i}\left(y_{i}\right)$ satisfies

$$
\left|y_{k}-\psi_{k, i}\left(y_{i}\right)\right| \leqslant L\left|t_{k}-t_{i}\right|^{(2+\gamma) \alpha}
$$

where L does not depend on the partition. With the Ascoli-Arzelà theorem, there exists $y \in \mathcal{C}\left([0, T], \mathbb{R}^{d}\right)$ s.t.

$$
\left|y_{t}-y_{s}-f^{[1]}\left(y_{s}\right) x_{s, t}-f^{[2]}\left(y_{s}\right) \mathbf{x}_{s, t}^{(2)}\right| \leqslant L|t-s|^{(2+\gamma) \alpha} .
$$

A.M. Davie 2010/ If $f \in \mathcal{C}^{1+\gamma}, \alpha(2+\gamma)>1$, then there exists a path $y \in \mathcal{C}^{\alpha}\left([0, T], \mathbb{R}^{d}\right)$ that solves (\boldsymbol{Q}°).
If $f \in \mathcal{C}^{2+\gamma}, \alpha(2+\gamma)>1$, then y is unique and locally Lipschitz continuous wrt initial point.

The Non-Linear Sewing Lemma
A general framework allows one to deal with flows, without reference to a particular approximation (I. Bailleul 2014).
A. Brault \& AL, 2017/Let $\psi_{t, s}$ be a family satisfying with $\delta_{T} \rightarrow$ 0 as $T \rightarrow 0$,

$$
\begin{aligned}
& \left\|\psi_{t, s}-E\right\|_{\infty} \leqslant \delta_{t-s},\left\|\psi_{t, s}\right\|_{\text {Lip }} \leqslant 1+\delta_{t-s} \\
& \left\|\psi_{t, s} \circ \psi_{s, r}-\psi_{t, r}\right\|_{\infty} \leqslant C|t-r|^{\theta}, \theta>1
\end{aligned}
$$

Then there exists a measurable flow χ satisfying

$$
\chi_{t, s} \circ \chi_{s, r}=\chi_{t, r} \text { and }\left\|\chi_{t, s}-\psi_{t, s}\right\|_{\infty} \leqslant C|t-s|^{\theta} .
$$

I. Bailleul, A. Brault \& AL/ Using some more stringent conditions, the flow is unique and Lipschitz.

On Davie's solution

1. When $f \in \mathcal{C}^{1+\gamma}$, the solution is not necessarily unique (A.M. Davie 2010). Counter-examples exist.
2. When $f \in \mathcal{C}^{2+\gamma}$, the rate of convergence of the Euler scheme could be given.
3. The dichotomy the regularity $1+\gamma$ (Cauchy-Peaono) and $2+\gamma$ (Cauchy-Lipschitz) is "essentially" sharp.
4. There are other ways to approximate flows leading to higher order rate of convergence

- I. Bailleul approximation by solving ODE by computing formal logarithm
- P. Friz \& N. Victoir using sub-Riemannian geodesics

5. The solution is defined as a path $y \in \mathcal{C}^{\alpha}\left([0, T], \mathbb{R}^{m}\right)$. This solution cannot be used as an input for another integral. This draws the line between $\alpha>1 / 2$ and $\alpha \leqslant 1 / 2$.

- VII -

Rough Differential Equations: Gubinelli's derivative

The idea of Gubinelli's derivative
When y is a solution in the sense of Davie of $y_{t}=a+\int_{0}^{t} f\left(y_{s}\right) \mathrm{d} \mathbf{x}_{s}$,

$$
\left|y_{s, t}-f^{[1]}\left(y_{s}\right) x_{s, t}-f^{[2]}\left(y_{s}\right) \mathbf{x}_{s, t}^{(2)}\right| \leqslant L|t-s|^{(2+\gamma) \alpha}
$$

with $f^{[1]}=f E$ and $f^{[2]}=f f E=f \nabla f$.
We rewrite

$$
y_{s, t}=y_{s}^{\dagger} x_{s, t}+y_{s, t}^{\sharp} \text { with }\left\{\begin{array}{l}
y_{s}^{\dagger}=f^{[1]}\left(y_{s}\right) \\
y_{s, t}^{\sharp}=f^{[2]}\left(y_{s}\right) \mathbf{x}_{s, t}^{(2)}+\text { remain. }
\end{array}\right.
$$

so that $\left|y_{s, t}^{\sharp}\right| \leqslant C|t-s|^{2 \alpha}$.
Similarly to Young integrals, increments of the solutions locally "look like" the one of x.

Gubinelli's space

Def. For $1 / 3<\alpha \leqslant 1 / 2,0<\gamma \leqslant 1$ and a path $x \in \mathcal{C}^{\alpha}\left([0, T], \mathbb{R}^{d}\right)$, the Gubinelli space is
$\mathbb{G}_{x}=\left\{\begin{array}{l|l}\left(y, y^{\dagger}\right) & \begin{array}{l}y \in \mathcal{C}^{\alpha}\left([0, T], \mathbb{R}^{d}\right) \\ y^{\dagger} \in \mathcal{C}^{\alpha \gamma}\left([0, T], \mathrm{L}\left(\mathbb{R}^{d}, \mathbb{R}^{m}\right)\right) \\ y_{s, t}=y_{s}^{\dagger} \cdot x_{s, t}+y_{s, t}^{\sharp} \text { with }\left|y_{s, t}^{\sharp}\right| \leqslant C|t-s|^{2 \alpha}\end{array}\end{array}\right\}$.
The idea is to encode both the paths and its increment wrt x :

- y^{\dagger} is the Gubinelli derivative
- y^{\sharp} is the remainder

The space \mathbb{G}_{x} has a vector space structure. It depends on x (this has heavy consequences).
Def. An element of \mathbb{G}_{x} is called a controlled rough path.

Gubinelli's space and integration

The notion of Gubinelli's space is convenient for integration.
M. Gubinelli 2004/ Assume $\theta=\alpha(2+\gamma)>1$. Let \mathbf{x} be a rough path above x. Let $\underline{y}=\left(y, y^{\dagger}\right) \in \mathbb{G}_{x}$. Then

$$
\int_{r}^{t} \underline{y}_{s} \mathrm{~d} \mathbf{x}_{s}=\lim _{|\pi| \rightarrow 0} \sum_{\pi \cap[r, t]}\left(y_{u} x_{u, v}+y_{u}^{\dagger} \mathbf{x}_{u, v}^{(2)}\right)
$$

is well defined and linear with respect to $\left(y, y^{\dagger}\right)$. Besides,

$$
\left|\int_{r}^{t} \underline{y}_{s} \mathrm{~d} \mathbf{x}_{s}-y_{r} x_{r, t}-y_{r}^{\dagger} \mathbf{x}_{r, t}^{(2)}\right| \leqslant K|t-r|^{\theta} .
$$

This linear rough integral, which is a natural expansion of the Young integral (if $\alpha>1 / 2, \sum y_{u}^{\dagger} \mathbf{x}_{u, v}^{(2)}$ disappear as $|\pi| \rightarrow 0$).

Gubinelli's space and integration
Again, the existence of the rough integral is an immediate consequence of ... (surprise) ... the Additive Sewing Lemma. Set

$$
Z_{s, t}=y_{s} x_{s, t}+y_{s}^{\dagger} \mathbf{x}_{s, t}^{(2)}
$$

Thus

$$
\begin{aligned}
& Z_{r, s}+Z_{s, t}-Z_{r, t}=-y_{r}^{\dagger} x_{r, s} \otimes x_{s, t}+y_{r, s} x_{s, t}+y_{r, s}^{\dagger} \mathbf{x}_{s, t}^{(2)} \\
&=y_{r, s}^{\sharp} x_{s, t}+y_{r, s}^{\dagger} \mathbf{x}_{s, t}^{(2)}
\end{aligned}
$$

Acutally,

$$
\begin{gathered}
\left|y_{r, s}^{\dagger} \mathbf{x}_{s, t}^{(2)}\right| \leqslant C|t-r|^{\alpha(2+\gamma)}(;) \\
\left|y_{r, s}^{\sharp} x_{s, t}\right| \leqslant C|t-r|^{3 \alpha}(\cdot) .
\end{gathered}
$$

The Omega lemma for Gubinelli's space
Let $\underline{y}=\left(y, y^{\dagger}\right) \in \mathbb{G}_{x}$ and $f \in \mathcal{C}_{b}^{1+\gamma}\left(\mathbb{R}^{d}, \mathbb{R}^{m}\right)$.
Using the Taylor development,

$$
\begin{aligned}
f\left(y_{t}\right) & -f\left(y_{s}\right)=\overbrace{\nabla f\left(y_{s}\right) y_{s}^{\dagger}}^{f(y))_{s, t}^{\dagger}} \\
& +\underbrace{\nabla f\left(y_{s}\right) y_{s, t}^{\sharp}+\int_{0}^{1}\left(\nabla f\left(y_{s}+\tau y_{s, t}\right)-\nabla f\left(y_{s}\right)\right) y_{s, t} \mathrm{~d} \tau}_{f(y))_{s, t}^{\sharp}}
\end{aligned}
$$

The Omega lemma for Gubinelli's space

Omega lemma, L. Coutin \& AL 2018/

When $f \in \mathcal{C}_{\mathrm{b}}^{1+\gamma}\left(\mathbb{R}^{d}, \mathbb{R}^{m}\right), \alpha(1+\gamma)>1$, then

$$
\Omega f(\underline{y})=\left(f\left(y_{t}\right), \nabla f\left(y_{t}\right) y_{t}^{\dagger}\right)_{t \in[0, T]}
$$

$\operatorname{maps} \mathbb{G}_{x}$ to \mathbb{G}_{x}.
If $f \in \mathcal{C}_{\mathrm{b}}^{1+k+\gamma}, k \geqslant 0$, then Ωf is locally in $\mathcal{C}^{k+(1-\kappa) \gamma}$ up to decreasing the regularity of the arrival space.

Consequences on RDE

We apply the same techniques as for YDE when $\alpha(2+\gamma)>1$. However, f has "one rank" of regularity more than for YDE

1. Existence (but not uniqueness) for $f \in \mathcal{C}^{1+\gamma}$.
2. Uniqueness for $f \in \mathcal{C}^{2+\gamma}$ and local Hölder regularity of the solutions wrt (a, f).
3. Convergence of the Euler scheme for $f \in \mathcal{C}^{2+\gamma}$.
4. The Itô map $\mathbf{x} \mapsto y$ is locally Lipschitz continuous.
5. Sensitivity wrt \mathbf{x} is a cumbersome issue. The "direction" should be defined.
6. When \mathbf{x} is a geometric rough path, y is the limit of solution of ODEs constructed by approximations of x.
7. Global existence ($T=+\infty$) is also cumbersome and depends on the notion of solution.
8.

To summarize (Rough case, $1 / 3<\alpha \leqslant 1 / 2$)

- This classification is essentially sharp.
- Several solutions exist unless $f \in \mathcal{C}^{2+\gamma}$ (A.M. Davie 2010).
- Any solution can be lifted as a rough path/an element of \mathbb{G}_{x}.

Other approaches

- The original approach from T. Lyons consists in finding the fixed point as a rough path lying above (y, x), hence constructing the iterated integrals between y and x.

There is no need to compute all the iterated integrals, one may consider constructing only y and $\int y \mathrm{~d} x$ (AL \& N. Victoir 2006).

- There are several ways to construct flows
- A.M. Davie by Euler-type approximation
- I. Bailleul by "freezing" the vector field
- P. Friz \& N. Victor by using sub-Riemannian geodesics
- Approaches for SPDE work as well
- M. Hairer using regularity structures.
- M. Gubinelli, N. Perkowski \& P. Imkeller using paraproducts

Application to stochastic analysis

$\mathbf{B}_{r, t}^{(2)}=\int_{r}^{t}\left(B_{s}-B_{r}\right) \otimes \circ \mathrm{d} B_{s} \Longrightarrow \mathrm{RDE} \equiv$ Stratonovich SDE
$\mathbf{B}_{r, t}^{(2)}=\int_{r}^{t}\left(B_{s}-B_{r}\right) \otimes \mathrm{d} B_{s} \Longrightarrow \mathrm{RDE} \equiv \mathrm{Itô} \mathrm{SDE}$.
Applied to SDE, we may

- Prove large deviation using the transfer principle by focusing on the enhanced Brownian motion
- Prove support theorem
- Justify some Monte Carlo simulation
- Understand some limit theorems (Wong-Zakai, McShane, homogenization, ...)

Applied to fractional Brownian motion, many results known from SDE could be extended (existence of density, ...).

Books and surveys

- Lyons, T.J., Differential equations driven by rough signals, Rev. Mat. Iberoamericana 14, 1998.
- Lyons, T. \& Qian, Z., System control and rough paths. Oxford University Press, Oxford 2002.
- Lejay, A., An introduction to rough paths. Séminaire de Probabilités XXXVII, Lecture Notes in Math. 1832, Springer 2003.
- Gubinelli, M., Controlling rough paths. J. Funct. Anal. 216, 2004.
- Lyons, T.J., Caruana, M. \& Lévy, T., Differential equations driven by rough paths. Lectures from the 34 th Summer School on Probability Theory held in Saint-Flour, July 6-24, 2004. Lecture Notes in Mathematics, 1908. Springer 2007.
- Lejay, A., Yet another introduction to rough paths. Séminaire de Probabilités XLII, Lecture Notes in Math. 1979, Springer 2009.
- Friz, P.K. \& Victoir, N.B., Multidimensional stochastic processes as rough paths. Theory and applications. Cambridge University Press, Cambridge 2010.
- Coutin, L., Rough paths via sewing Lemma, ESAIM: Probability and Statistics 16, 2012.
- Friz, P.K. \& Hairer, M., A course on rough paths. With an introduction to regularity structures. Universitext. Springer 2014.
- Bailleul, I., A flow-based approach to rough differential equations. Master 2 lecture notes, Rennes (on his web page) 2014.
- Chevyrev, I. \& Kormilitzin, A., A Primer on the Signature Method in Machine Learning, preprint (arxiv) 2016.
- Brault, A., Solving rough differential equations with the theory of regularity structures, Séminaire de Probabilités XLIX, Lecture Notes in Math. 2018.

Other references cited in this lecture

- McShane, E.J., Stochastic differential equations and models of random processes, Proc. Sixth Berkeley Symp. on Math. Statist. and Prob. 3, 1972.
- Young, L.C., An inequality of the Hölder type, connected with Stieltjes integration, Acta Mathematica 67, 1936.
- Feyel, D., de la Pradelle, A. \& Mokobodzki, G., A non-commutative sewing lemma, Electron. Commun. Probab. 13, 2008.
- Davie, A.M., Differential equations driven by rough paths: an approach via discrete approximation, Appl. Math. Res. eXpress 35, 2010.
- Coutin, L. \& Lejay, A., Sensitivity of rough differential equations: an approach through the Omega lemma, J. Diff. Eq. 264, 2018.
- Brault, A. \& Lejay, A., The non-linear sewing lemma I: weak formulation, preprint, 2018.
- Chen, K.T., Integration of paths - a faithful representation of paths by non-commutative formal power series, Trans. Amer. Math. Soc. 89, 1958.
- Lyons, T. \& Hambly, B., Uniqueness for the signature of a path of bounded variation and the reduced path group, Ann. Math. 171, 2010.
- Lyons, T. \& Victoir, N., An extension theorem to rough paths, Ann. Inst. H. Poincaré Anal. Non Linéaire 24, 2007.
- Unterberger, J., Hölder-continuous rough paths by Fourier normal ordering, Comm. Math. Phys. 298, 2010.
- Hairer, M., Solving the KPZ equation, Annals of Mathematics 178, 2013.
- Bailleul, I., Flows driven by rough paths, Rev. Mat. Iberoam. 31, 2015.
- Gubinelli, M., Perkowski, N. \& Imkeller, P., Differential equations driven by rough paths, Forum Math. Pi 3, 2015.

