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Rough paths

What? A theory to define integrals/diff eq. driven by irregular paths

𝑦 𝑡 = 𝑎 +

∫︁ 𝑡

0

𝑓 (𝑦 𝑠) d𝑥 𝑠

such that “𝑥 ↦→ 𝑦 ” is continuous.

Why? To
• define pathwise SDE
• extend SDE to other noises than Brownian ones (frac-
tional, ...)

• develop numerical schemes
• perform machine learning task, ...

Who, When and Where? T. Lyons at Oxford U. in 1998, now world-
wide (France, Germany, Japan, ...).



— I —
The intuition behind the rough paths theory:

the role of the Lévy area



Stratonovich integrals
Itô/Stratonovich integrals cannot be defined pathwise.

∫︁ 𝑇

0

𝑓 (𝐵𝑠) ∘ d𝐵𝑠

= P- lim
[𝑢,𝑣 ]∈𝜋

𝑓 (𝐵𝑢) + 𝑓 (𝐵𝑣)

2
(𝐵𝑣 − 𝐵𝑢) (Riemann type)

= P- lim
∫︁ 𝑇

0

𝑓 (𝐵𝜋𝑠 ) d𝐵
𝜋
𝑠 (Wong-Zakai)

where 𝐵𝜋 piecewise linear approximation of 𝐵 along dyadic parti-
tions 𝜋.



Stratonovich integrals
𝐵 𝑑-dimensional BM with increments 𝐵𝑠,𝑡 := 𝐵𝑡 − 𝐵𝑠
Define

𝐾 𝑖 ,𝑗
[𝑠,𝑡] =

∫︁ 𝑡

𝑠

(𝐵𝑖𝑟 − 𝐵𝑖𝑠) ∘ d𝐵𝑗𝑟 = 𝐴
𝑖 ,𝑗
[𝑠,𝑡] + 𝑆

𝑖 ,𝑗
[𝑠,𝑡].

Define also{︃
𝐴𝑖 ,𝑗[𝑠,𝑡] :=

1
2

(︁
𝐾 𝑖 ,𝑗
[𝑠,𝑡] −𝐾

𝑗,𝑖
[𝑠,𝑡]

)︁
Lévy area

𝑆𝑖 ,𝑗[𝑠,𝑡] :=
1
2
𝐵𝑖𝑠,𝑡 × 𝐵

𝑗
𝑠,𝑡 symmetric part

The symmetric part 𝑆[𝑠,𝑡] is a function of the increment 𝐵𝑠,𝑡 , un-
like 𝐴[𝑠,𝑡].



Stratonovich integrals
Recall that∫︁ 𝑇

0

𝑓 (𝐵𝑠) ∘ d𝐵𝑠 = P- lim
[𝑢,𝑣 ]∈𝜋

𝑓 (𝐵𝑢) + 𝑓 (𝐵𝑣)

2
(𝐵𝑣 − 𝐵𝑢)

= P- lim
[𝑢,𝑣 ]∈𝜋

+𝑓 (𝐵𝑢)(𝐵𝑣 − 𝐵𝑢) +
𝑓 (𝐵𝑣)− 𝑓 (𝐵𝑢)

2
(𝐵𝑣 − 𝐵𝑢)

With the Newton formula (think Stratonovich)

𝑓𝑗(𝐵𝑣)− 𝑓𝑗(𝐵𝑢) =
𝑑∑︁
𝑖=1

∫︁ 𝑣

𝑢

𝜕𝑖 𝑓𝑗(𝐵𝑟) ∘ d𝐵𝑖𝑟

=

𝑑∑︁
𝑖=1

𝜕𝑖 𝑓𝑗(𝐵𝑢)𝐵
𝑖
𝑢,𝑣 + rem.

=⇒ 𝑓𝑗(𝐵)𝑢,𝑣𝐵
𝑗
𝑢,𝑣 =

𝑑∑︁
𝑖=1

𝜕𝑖 𝑓𝑗(𝐵𝑢)𝑆
𝑖 ,𝑗
[𝑢,𝑣 ] + rem.



Stratonovich integrals

𝐼𝜋 =
∑︁
[𝑢,𝑣 ]∈𝜋

(︀
𝑓 (𝐵𝑢)𝐵𝑢,𝑣 + 𝜕𝑗 𝑓𝑖(𝐵𝑢)𝐾

𝑖 ,𝑗
[𝑢,𝑣 ]

)︀
=

∑︁
[𝑢,𝑣 ]∈𝜋

𝑓 (𝐵𝑢)(𝐵𝑣 − 𝐵𝑢) +
1

2
(𝑓 (𝐵𝑣)− 𝑓 (𝐵𝑢))𝐵𝑢,𝑣⏟  ⏞  

Stratonovich approx.

+rem.

+
∑︁
[𝑢,𝑣 ]∈𝜋

𝜕𝑗 𝑓𝑖(𝐵𝑢)𝐴
𝑖 ,𝑗
[𝑢,𝑣 ]⏟  ⏞  

→0 in prob. due to a martingale arg

The theory of rough paths shows that 𝐼𝜋 converges almost surely.
The theory also endows the primary role of the Lévy area.



The role played by the Lévy area
𝐵𝜋 piecewise linear interpolation of the Brownian motion

𝐼𝜋 =
∑︁
[𝑢,𝑣 ]∈𝜋

(︁
𝑓 (𝐵𝑢)𝐵𝑢,𝑣 + 𝜕𝑗 𝑓𝑖(𝐵𝑢)𝐾

𝑖 ,𝑗
[𝑢,𝑣 ]

)︁
=

∫︁ 𝑇

0

𝑓 (𝐵𝜋𝑠 ) d𝐵
𝜋
𝑠 + rem −−−−→

|𝜋|→0

∫︁ 𝑇

0

𝑓 (𝐵𝑠) ∘ d𝐵𝑠 .

Choose 𝑑 = 2 and 𝜑 ∈ 𝒞1([0, 𝑇 ],R).
Use another family of approximation of 𝐵 along 𝜋 s.t.

E[𝐴1,2(𝐵𝜋)[𝑢,𝑣 ] | ℱ𝜋𝑢 ] = −E[𝐴2,1(𝐵𝜋)[𝑢,𝑣 ] | ℱ𝜋𝑢 ] ≈ 𝜑𝑢,𝑣 .

Then (McShane 1972)

𝐼𝜋 −−−−→
|𝜋|→0

∫︁ 𝑇

0

𝑓 (𝐵𝑠) ∘ d𝐵𝑠 +
1

2

∫︁ 𝑇

0

(𝜕1𝑓2 − 𝜕2𝑓1)(𝐵𝑠) d𝜑𝑠 .



Smooth paths converging to smooth paths
This is not related to the regularity of the path itself, but to the
regularity of the approximating sequence.

• 𝑥 ∈ 𝒞1([0, 𝑇 ],R2)
• extra (=arbitrary) 𝜑 ∈ 𝒞1([0, 𝑇 ],R)
• 𝑥𝜋 = 𝑥 + loops of area 𝜑𝑢,𝑣
• 𝑓 = (𝑓1, 𝑓2) smooth differential form

𝑡0

𝑡1

𝑡2 𝑡3
𝑡4

𝑡5
𝑥

area= 𝜑𝑡1,𝑡2
radius= O(

√
𝑡2 − 𝑡1)



Smooth paths converging to smooth paths
This is not related to the regularity of the path itself, but to the
regularity of the approximating sequence.

• 𝑥 ∈ 𝒞1([0, 𝑇 ],R2)
• extra (=arbitrary) 𝜑 ∈ 𝒞1([0, 𝑇 ],R)
• 𝑥𝜋 = 𝑥 + loops of area 𝜑𝑢,𝑣
• 𝑓 = (𝑓1, 𝑓2) smooth differential form∫︁

𝑥𝜋
𝑓 =

∫︁
𝑥

𝑓 +
∑︁
[𝑢,𝑣 ]∈𝜋

∫︁
loop
𝑓

Gauss-Green
=

∫︁
𝑥

𝑓 +
∑︁
[𝑢,𝑣 ]∈𝜋

x

area of
the loop

d𝑓

≈
∫︁
𝑥

𝑓 +
∑︁
[𝑢,𝑣 ]∈𝜋

(𝜕1𝑓2 − 𝜕2𝑓1)(𝑥𝑢)𝜑𝑣,𝑢

−−−−→
|𝜋|→0

∫︁
𝑥

𝑓 +

∫︁
(𝜕1𝑓2 − 𝜕2𝑓1)(𝑥𝑠) d𝜑𝑠 =:

∫︁
(𝑥,𝜑)

𝑓 .



It’s not a bug, its a feature!
• 𝑥𝜋 converges uniformly to 𝑥 .

⇒ The map 𝑥 ↦→
∫︀
𝑥
𝑓 is not continuous w.r.t ‖·‖∞.

• Each 𝑥𝜋 converges to 𝑥 wrt ‖·‖𝛼 with 𝛼 < 1/2 (Hölder norm).

• The arbitrary function 𝜑 corresponds to some exogenous informa-
tion (called the Lévy area, not necessarily the natural one).

⇒ As
∫︀
(𝑥,𝜑)

𝑓 = lim
∫︀
𝑥𝜋
𝑓 , we identify (𝑥, 𝜑) with {𝑥𝜋}𝜋.

• Similarly, when 𝑥 is irregular, 𝑥 ∈ 𝒞𝛼, 1/3 < 𝛼 6 1/2, we identify it
with {𝑥𝜋}𝜋, 𝑥𝜋 ∈ 𝒞1 with a prescribed area on [𝑢, 𝑣 ] ∈ 𝜋.

• The Stratonovich integral corresponds to the natural choice of the
Lévy area which statistically disappear in the limit (the Itô integral
too, using Itô integration).

• Different choices of 𝜑/{𝑥𝜋}𝜋 lead to different integrals.



The intuition behind the theory of rough paths

The theory of rough paths lies on the fact that the
Lévy area is THE information to define a continuous,
natural extension of 𝑥 ↦→

∫︀
𝑓 (𝑥𝑠) d𝑥𝑠 for 𝑥 ∈ 𝒞𝛼,

1/3 < 𝛼 6 1/2.

A rough path x is an enhanced path lying above 𝑥
that includes such a data.

Once integrals are defined, we can define a consis-
tent theory of differential equations as well.

It could be applied to many stochastic processes.
The theory itself is deterministic.



The roadmap

The role of
the Lévy area

Bilinear Young integrals

Young differential eq.
1/2 < 𝛼 6 1

Algebraic setting
for the Lévy area

Rough Differential Eq.
1/3 < 𝛼 6 1/2



— II —
The technical core for integrals:

Young integrals
&

the additive sewing lemma



Young integrals

Young, 1936/ 𝑥 ∈ 𝒞𝛼([0, 𝑇 ],R), 𝑦 ∈ 𝒞𝛽([0, 𝑇 ],R), 𝜃 :=
𝛼 + 𝛽 > 1. The Young integral exists as a family bilinear
maps

(𝑦 , 𝑥) ↦→ 𝒴𝑠,𝑡(𝑦 , 𝑥) :=
∫︁ 𝑡

𝑠

𝑦𝑟 d𝑥𝑟

with
• Chasles’ property 𝒴𝑟,𝑠(𝑦 , 𝑥) + 𝒴𝑠,𝑡(𝑦 , 𝑥) = 𝒴𝑟,𝑡(𝑦 , 𝑥)
• Regularity 𝑡 ↦→ 𝒴0,𝑡(𝑦 , 𝑥) ∈ 𝒞𝛼([0, 𝑇 ],R)
• Main control

|𝒴𝑠,𝑡(𝑦 , 𝑥)− 𝑦𝑠 · 𝑥𝑠,𝑡 | 6 𝐾‖𝑦‖𝛽‖𝑥‖𝛼(𝑡 − 𝑠)𝜃. (♠)

Rem. 𝑥 , 𝑦 could take their values in any Banach spacesU andV for
which a continuous product V × U ↦→W exists.



The additive sewing lemma
Let us set 𝑌 0𝑠,𝑡 = 𝑦𝑠 · 𝑥𝑠,𝑡 . Since 𝑥𝑠,𝑟 + 𝑥𝑠,𝑡 = 𝑥𝑠,𝑡 ,

𝑌 0𝑟,𝑠 + 𝑌
0
𝑠,𝑡 − 𝑌 0𝑠,𝑟 = 𝑦𝑟,𝑠 · 𝑥𝑠,𝑡 .

With 𝑠 = (𝑡 + 𝑟)/2, the midpoint,

𝑌 𝑛+1𝑟,𝑡 := 𝑌
𝑛
𝑟,𝑠 + 𝑌

𝑛
𝑠,𝑡 .

It holds that

𝑌 𝑛+1𝑟,𝑡 − 𝑌 𝑛𝑟,𝑡 = 𝑌 𝑛𝑟,𝑠 + 𝑌 𝑛𝑠,𝑡 − 𝑌 𝑛−1𝑟,𝑠 − 𝑌 𝑛−1𝑠,𝑡 .

Set
𝑉 𝑛+1(𝛿) := sup

|𝑡−𝑠|6𝛿
|𝑌 𝑛+1𝑠,𝑡 − 𝑌 𝑛𝑠,𝑡 |

to obtain
𝑉 𝑛+1(𝛿) 6 2𝑉 𝑛(𝛿/2) 6 2𝑛𝑉 1(𝛿/2𝑛).



The additive sewing lemma
Since

𝑉 1(𝛿) 6 sup
|𝑡−𝑟 |6𝛿

|𝑦𝑟,𝑠 | · |𝑥𝑠,𝑡 | 6 ‖𝑦‖𝛽 · ‖𝑥‖𝛼𝛿𝛼+𝛽

the sequence (𝑌 𝑛𝑠,𝑡)𝑛 is Cauchy since (𝜃 := 𝛼+ 𝛽 > 1)

𝑉 𝑛+1(𝛿) 6
1

2𝑛(𝜃−1)
‖𝑦‖𝛽 · ‖𝑥‖𝛼 and

∑︁
𝑛>0

1

2𝑛(𝜃−1)
< +∞.

With a bit more analysis,
• 𝑌 𝑛𝑠,𝑡 converges to 𝑌

∞
𝑠,𝑡 for each (𝑠, 𝑡) with

𝑌 ∞𝑟,𝑠 + 𝑌
∞
𝑠,𝑡 = 𝑌

∞
𝑟,𝑡 , ∀(𝑟,𝑠,𝑡). (♣)

• For each (𝑠, 𝑡),

|𝑌 ∞𝑠,𝑡 − 𝑌 0𝑠,𝑡 | 6 𝐾‖𝑦‖𝛽 · ‖𝑥‖𝛼(𝑡 − 𝑠)𝜃 (♠)
• 𝑌 ∞ is the only family satisfying (♠)-(♣).



The additive sewing lemma
• 𝑌 ∞ is the Young integral. It satisfies

𝑌 ∞𝑠,𝑡 = lim|𝜋|→0

∑︁
[𝑢,𝑣 ]⊂𝜋∩[𝑠,𝑡]

𝑦𝑢 · 𝑥𝑢,𝑣 .

• There are several proofs for this results. They all follow the same
general scheme. Here: D. Feyel, A. de la Pradelle & G. Mokobodzki
2008.

• The exact form of 𝑌 0 does not matter. What matters is that

|𝑌 0𝑟,𝑠,𝑡 | 6 𝐶𝜛(𝜔𝑟,𝑡) with 𝑌 0𝑟,𝑠,𝑡 := 𝑌 0𝑟,𝑠 + 𝑌 0𝑠,𝑡 − 𝑌 0𝑠,𝑡

and𝜛 : R+ → R+ increasing , 2𝜛
(︂
𝛿

2

)︂
6 𝜅𝜛(𝛿), 𝜅 < 1.

• The additive sewing lemma maps continuously 𝑌 0 ↦→ 𝑌 ∞ with

|𝑌 ∞𝑠,𝑡 − 𝑌 0𝑠,𝑡 | 6 𝐿𝐶𝜛(𝜔𝑠,𝑡) and 𝑌 ∞𝑟,𝑠,𝑡 = 0.



The discrete additive sewing lemma (alternative way)

A.M. Davie 2010/ Let {𝜑𝑖 ,𝑗}𝑖=0,...,𝑛 be such that

|𝜑𝑖 ,𝑗 + 𝜑𝑗,𝑘 − 𝜑𝑖 ,𝑘 | 6 𝐴𝜛(𝑘 − 𝑖), ∀𝑖6𝑗6𝑘.

Then there exists𝐿 > 0 (universal) large enough such that

|𝜓𝑖 ,𝑘 − 𝜑𝑖 ,𝑘 | 6 𝐿𝜛(𝑘 − 𝑖) with 𝜓𝑖 ,𝑘 =
𝑘−1∑︁
𝑗=𝑖

𝜑𝑗,𝑗+1.

Proof: Use a doubling argument in a recurrence over 𝑘 − 𝑖 with 𝐿
satisfying 𝜅𝐿+ 𝐴 6 𝐿 and a “midpoint” 𝑗 :

𝜓𝑖 ,𝑘 − 𝜑𝑖 ,𝑘 = 𝜓𝑖 ,𝑗 − 𝜑𝑖 ,𝑗⏟  ⏞  
6𝐿𝜛(𝑘−𝑗)

+𝜓𝑖 ,𝑗 − 𝜑𝑖 ,𝑘⏟  ⏞  
6𝐿𝜛(𝑗−𝑖)⏟  ⏞  

6𝜅𝐿𝜛(𝑘−𝑖)

+ 𝜑𝑖 ,𝑗,𝑘⏟ ⏞ 
6𝐴𝜛(𝑘−𝑖)

.



— III —
Toward solving differential equations:

Young differential equations



The Omega lemma

Omega lemma, L. Coutin & AL 2018/
• Let 𝑓 ∈ 𝒞𝑘+𝛾(R𝑛,R𝑚), 0 < 𝛾 6 1 (𝑓 is 𝑘 differentiable
with bounded der. and∇𝑘 𝑓 ∈ 𝒞𝛾).

• SetΩ𝑓 (𝑥) := (𝑓 (𝑥𝑡))𝑡∈[0,𝑇 ] for 𝑥 ∈ 𝒞𝛼([0, 𝑇 ],R𝑛).
⇒ If 𝑘 = 0 thenΩ𝑓 : 𝒞𝛼 → 𝒞𝛼𝛾 .
⇒ If 𝑘 > 0, thenΩ𝑓 and is locally 𝒞𝑘+𝛾(1−𝜅)-Hölder continu-

ous from 𝒞𝛼 to 𝒞𝛼𝜅𝛾 for 0 < 𝜅 < 1.

Corollary. If 𝑓 ∈ 𝒞𝛾 , then

ℱ : 𝑥 ∈ 𝒞𝛼 ↦→
(︂∫︁ 𝑡

0

𝑓 (𝑥𝑠) d𝑥𝑠

)︂
𝑡∈[0,𝑇 ]

∈ 𝒞𝛼

is well defined and continuous provided that 𝛼(1+ 𝛾) > 1, hence
𝛼 > 1/2 at best.



Stability of balls

Weworkwith the following balls (relatively compact thanks to Ascoli-
Arzelà):

𝐵(𝑟, 𝑅) :=
{︀
𝑦 ∈ 𝒞𝛼([0, 𝑇 ],R𝑑)

⃒⃒
|𝑦0| 6 𝑟, ‖𝑦‖𝛼 6 𝑅

}︀
We will adjust 𝑟 , 𝑅 and 𝑇 .

When 𝑦 ∈ 𝐵(𝑟, 𝑅),

‖𝑦‖∞ 6 |𝑦0|+ ‖𝑦‖𝛼 𝑇 𝛼⏟ ⏞ 
offers some flexibility



Stability of balls
For 𝑓 ∈ 𝒞𝑘+𝛾 , 𝑘 > 0, bounded (to simplify) with bounded deriva-
tives

𝛽 =

{︃
𝛼𝛾 if 𝑘 = 0

𝛼 if 𝑘 > 1
and 𝛾 ′ =

{︃
𝛾 if 𝑘 = 0,

1 if 𝑘 > 1.

Recall thatΩ𝑓
• maps 𝒞𝛼 to 𝒞𝛽
• is 𝒞𝑘+(1−𝜅)𝛾 from 𝒞𝛼 to 𝒞𝜅𝛽 .

Then

Ω𝑓 (𝐵(𝑟, 𝑅)) ⊂ 𝐵(𝑟 ′, 𝑅′)
with

𝑟 ′ = ‖𝑓 ‖∞ + ‖𝑓 ‖𝛾′𝑟 𝛾
′
and 𝑅′ = ‖𝑓 ‖𝛾′𝑅𝛾

′
.



Young differential equations
A Young differential equation is

𝑦𝑡 = 𝑎 +

∫︁ 𝑡

0

𝑓 (𝑦𝑠) d𝑥𝑠 = 𝑎 + 𝒴(Ω𝑓 (𝑦), 𝑥)𝑡 , 𝑡∈[0,𝑇 ] (YDE)

with the bilinear map

𝒴(𝑧, 𝑥)𝑡 =
∫︁ 𝑡

0

𝑧𝑠 d𝑥𝑠 with 𝑧 ∈ 𝒞𝛽, 𝑥 ∈ 𝒞𝛼.

We then “seperate” the study ofΩ𝑓 and 𝒴 :
• Ω𝑓 is been studied through the Omega lemma.
• 𝒴 is bilinear (hence 𝒞∞).
• We study (YDE) as functional, abstract equation.



Young differential equations
Fundamental inequality on Young integral

|𝒴(𝑧, 𝑥)𝑠,𝑡 − 𝑧𝑠 · 𝑥𝑠,𝑡 | 6 𝐶‖𝑧‖𝛽 × ‖𝑥‖𝛼|𝑡 − 𝑠|𝛼+𝛽

=⇒ ‖𝒴(𝑧, 𝑥)‖𝛼 6 ‖𝑧‖∞ · ‖𝑥‖𝛼 + 𝐶‖𝑧‖𝛽 · ‖𝑥‖𝛼𝑇 𝛽

6 |𝑧0| · ‖𝑥‖𝛼 + (1 + 𝐶)‖𝑧‖𝛽 · ‖𝑥‖𝛼𝑇 𝛽

If 𝑧 ∈ 𝐵(𝑟𝑧 , 𝑅𝑧), 𝑥 ∈ 𝐵(𝑟𝑥 , 𝑅𝑥), |𝑎| 6 𝑟𝑎 then

‖𝑎 + 𝒴(𝑧, 𝑥)‖𝛼 6 𝑟𝑧𝑅𝑥 + (1 + 𝐶)𝑅𝑧𝑅𝑥𝑇 𝛽.

If 𝑦 ∈ 𝐵(𝑟𝑦 , 𝑅𝑦), then Ω𝑓 (𝑦) ∈ 𝐵(𝑟𝑧 , 𝑅𝑧) function of ‖𝑓 ‖∞ and
‖𝑓 ‖𝛾′ .
Thus,

𝑅′ = ‖𝑎 + 𝒴(Ω𝑓 (𝑦), 𝑧)‖𝛼 6 𝑟𝑧𝑅𝑥 + (1 + 𝐶)‖𝑓 ‖𝛾′𝑅𝛾
′

𝑦 𝑅𝑥𝑇
𝛽.

We tune 𝑇 to get 𝑅′ 6 𝑅𝑦 , and choose 𝑟𝑦 > |𝑎|.



Young differential equations: existence
So far, we have proved that

𝑦 ∈ 𝐵(𝑟𝑦 , 𝑅𝑦) =⇒ 𝑎 + 𝒴(Ω𝑓 (𝑦), 𝑥) ∈ 𝐵(𝑟𝑦 , 𝑅𝑦)

for a proper choice of𝑇 (short time) which depends on 𝑟𝑥 ,𝑅𝑥 , ‖𝑓 ‖𝛾′
and ‖𝑓 ‖∞. We can easily pass from short time to any time.

Existence/
Let 𝑓 ∈ 𝒞𝛾 , 𝑥 ∈ 𝒞𝛼([0, 𝑇 ],R𝑑), 𝛼(1 + 𝛾) > 1. Then there
exists a solution to

𝑦 = 𝑎 + 𝒴(Ω𝑓 (𝑦), 𝑥)

thanks to a Schauder fixed point theorem.
This solution is not necessarily unique (A.M. Davie 2010).



Young differential equations: uniqueness
WhenΩ𝑓 is Lipschitz continuous from 𝒞𝛼 to 𝒞𝛽 , when 𝑦0 = 𝑧0,

‖𝒴(Ω𝑓 (𝑦), 𝑥)−𝒴(Ω𝑓 (𝑧), 𝑥)‖𝛼 = ‖𝒴(Ω𝑓 (𝑦)−Ω𝑓 (𝑧), 𝑥)‖𝛼
6 𝐶‖𝑓 ‖Lip‖𝑦‖𝛼 · ‖𝑥‖𝛼𝑇 𝛽.

Again, wemay tune𝑇 to get a contractive operator 𝑦 ↦→ 𝒴(Ω𝑓 (𝑦), 𝑥).

Uniqueness/
When 𝑓 ∈ 𝒞1+𝛾 , 𝑥 ∈ 𝒞𝛼([0, 𝑇 ],R𝑑), 𝛼(1 + 𝛾) > 1, there
exists a unique solution to

𝑦 = 𝑎 + 𝒴(Ω𝑓 (𝑦), 𝑥)

thanks to a Banach fixed point theorem.

This works even in an infinite dimensional space.



Young differential equations: regularity

Assume thatΩ𝑓 ∈ 𝒞1+𝜆. The solution of the YDE is solution to the
fixed point

𝑦 = 𝑎 + 𝒴(Ω𝑓 (𝑦), 𝑥).

This solution is unique.

Def. The map ℐ : 𝑥 ↦→ 𝑦 is called the Itô map.

We use the Implicit Function Theorem to relate the regularity ofΩ𝑓
to the one of (𝑎, 𝑓 , 𝑥) ↦→ 𝑦 .



The Implicit Functions Theorem
Let ℱ(𝑦 , 𝜆) be locally of class 𝒞𝜇 wrt (𝑦 , 𝜆), 𝜆 is a parameter.
Assume that for (𝑦0, 𝜆0),

ℱ(𝑦0, 𝜆0) = 0

and
D𝑦ℱ(𝑦0, 𝜆0) is invertible.

Then ℱ is locally a 𝒞𝜇-diffeomorphism around from a neighbor-
hood 𝑉 of (𝑦0, 𝜆0) to a neighborhood𝑊 of 0 with inverse 𝒢 satis-
fying

ℱ(𝒢(𝑤, 𝜆), 𝜆) = 𝑤, 𝑤 ∈ 𝑊.

This theorem works in Banach spaces.



The Implicit Functions Theorem: Application to YDE
We consider

𝑦 = 𝑎 + 𝒴(Ω𝑓 (𝑦), 𝑥) + 𝑏 with 𝑥, 𝑏 ∈ 𝒞𝛼, 𝑓 ∈ 𝒞1+𝛾.

The parameters are 𝜆 = (𝑎, 𝑓 , 𝑥, 𝑏).
The map ℱ : 𝒞𝛼 → 𝒞𝛼 is then

ℱ(𝑦 , 𝜆) = 𝑦 − 𝑎 − 𝒴(Ω𝑓 (𝑦), 𝑥)− 𝑏.

Showing that

D𝑦ℱ(𝑦 , 𝜆) · 𝑧 = 𝑧 − 𝒴(ΩD𝑦 𝑓 (𝑦) · 𝑧, 𝑥)

is invertible around a given (𝑎, 𝑓 , 𝑥, 𝑏) is equivalent in solving the
linear YDE

𝑧 − 𝒴(ΩD𝑦 𝑓 (𝑦) · 𝑧, 𝑥) = 𝑑
for any 𝑑 ∈ 𝒞𝛼. This is always possible.



Young differential equations: regularity

Main idea: The regularity of (𝑎, 𝑥, 𝑓 , 𝑏) ↦→ 𝑦 depends on the regu-
larity ofΩ𝑓 .

Regularity, L. Coutin & AL 2018/
Let 𝑓 ∈ 𝒞1+𝛾 , 𝑥, 𝑏 ∈ 𝒞𝛼([0, 𝑇 ],R𝑑), 𝛼(1 + 𝛾) > 1.
The map (𝑎, 𝑓 , 𝑥, 𝑏) ↦→ 𝑦 with 𝑦 solution to

𝑦 = 𝑎 + 𝒴(Ω𝑓 (𝑦), 𝑥) + 𝑏

is locally of class 𝒞1+(1−𝜅)𝛾 wrt all its parameters.



To summarize (Young case 1/2 < 𝛼 6 1)
ODE YDE

“Cauchy-Peano”
existence

non uniqueness a priori
𝑓 continuous

𝑓 ∈ 𝒞𝛾
𝛼(1 + 𝛾) > 1

sol in 𝒞𝛼

“Cauchy-Lipschitz”
uniqueness
Lipschitz flow

conv. of Euler scheme

𝑓 Lipschitz
𝑓 ∈ 𝒞𝑘 ⇒ ℐ ∈ 𝒞𝑘

𝑓 ∈ 𝒞1+𝛾
𝛼(1 + 𝛾) > 1

⇒ℐ : 𝒞𝛼 → 𝒞𝛼
𝑓 ∈ 𝒞𝑘+𝛾 ⇒ ℐ ∈ 𝒞𝑘+𝜖𝛾

• This classification is essentially sharp.
• Several solution may exists unless 𝑓 ∈ 𝒞1+𝛾 (Davie 2010).
• Global solution (any time horizon) exists.
• A measurable flow may exists even when the solution is not unique
(A. Brault & AL 2018).



— IV —
Young differential equations:

convergence of numerical approximations



Discrete YDE
The above approaches work verbatim when 𝒴 is replaced by the
discrete integral

𝒴𝜋(𝑦 , 𝑥) =
∑︁
𝜋

𝑦𝑢 · 𝑥𝑢,𝑣 for (𝑦 , 𝑥) ∈ 𝒞𝛽𝜋 × 𝒞𝛼𝜋

and 𝒞𝛼 is replaced by

𝒞𝛼𝜋 = {𝑦 : 𝜋 → R𝑚}

with

‖𝑦‖𝛼 = sup
𝑠,𝑡∈𝜋
𝑠<𝑡

|𝑦𝑡 − 𝑦𝑠 |
(𝑡 − 𝑠)𝛼

and
Ω𝑓 (𝑦) = {𝑓 (𝑦𝑠) | 𝑠 ∈ 𝜋}.



Why considering discrete YDE?
When 𝑦𝜋 is a fixed point,

𝑦𝜋 = 𝑎 + 𝒴𝜋(Ω𝑓 (𝑦𝜋), 𝑥)

then for [𝑢, 𝑣 ] ∈ 𝜋,

𝑦𝜋𝑣 − 𝑦𝜋𝑢 = 𝑓 (𝑦𝜋𝑢 ) · 𝑥𝑢,𝑣 .

Thus, when 𝜋 = {𝑡0 < 𝑡1 < · · · < 𝑡𝑚}, 𝑦𝜋 is constructed itera-
tively by

𝑦𝜋𝑖+1 = 𝑦
𝜋
𝑖 + 𝑓 (𝑦

𝜋
𝑖 ) · 𝑥𝑖 ,𝑖+1, 𝑦𝜋0 = 𝑎

with the convention 𝑧𝑖 := 𝑧𝑡𝑖 .
The fixed point is explicitly constructed through a numerical, ex-
plicit scheme (Euler scheme). Using controls uniform in𝜋, the Ascoli-
Arzelà theorem replaces the Schauder/Banach fixed point theorem.



Why considering discrete YDE?

Euler scheme / A.M. Davie 2010
For 𝑓 ∈ 𝒞𝛾 and 𝑥 ∈ 𝒞𝛼 with 𝛼(1 + 𝛾) > 1, there exists a
constant 𝐿 depending only on ‖𝑥‖𝛼, 𝑇 and ‖𝑓 ‖𝛾 such that

|𝑦𝜋𝑡 − 𝑦𝜋𝑠 − 𝑓 (𝑦𝜋𝑠 ) · 𝑥𝑠,𝑡 | 6 𝐿|𝑡 − 𝑠|𝛼(1+𝛾), ∀𝑠6𝑡,(𝑠,𝑡)∈𝜋

for any partition 𝜋.
Therefore, any limit of {𝑦𝜋} satisfies

|𝑦𝑡 − 𝑦𝑠 − 𝑓 (𝑦𝑠) · 𝑥𝑠,𝑡 | 6 𝐿|𝑡 − 𝑠|𝛼(1+𝛾), ∀𝑠6𝑡 (♣)



Consequences of the construction of A.M. Davie
1. (♣) may serve as an alternative definition of solution.
2. When 𝑓 ∈ 𝒞1+𝛾 , the Euler scheme is locally 𝒞1+𝜆, 𝜆 < 𝛾 wrt the
parameters.

3. When 𝑓 ∈ 𝒞1+𝛾 , existence and uniqueness may be proved in the
infinite dimensional setting.

4. When 𝑓 ∈ 𝒞1+𝛾 , the rate of convergence of 𝑦𝜋 toward 𝑦 may be
quantified.

5. The construction encompasses the importance of the approxima-
tion of the flow (developed later)

𝜑𝑡,𝑠(𝑎) = 𝑎 + 𝑓 (𝑎) · 𝑥𝑠,𝑡 .
6. When 𝑓 ∈ 𝒞1+𝛾 , a flow of 𝒞1+𝜆loc -diffeomorphism exists, that is a

family 𝜓𝑡,𝑠 with

𝜓𝑡,𝑠(𝜓𝑠,𝑟(𝑎)) = 𝜓𝑡,𝑟(𝑎) and |𝜓𝑡,𝑠(𝑎)−𝜑𝑡,𝑠(𝑎)| 6 𝐶|𝑡−𝑠|𝛼(1+𝛾).



— V —
Multiplicative functionals:

From Chen series to rough paths



Linear equations and multiplicative functionals

• (B,+, ·) Banach algebra (≡ vector space with a product), 1 unit
element, ‖𝑎𝑏‖ 6 ‖𝑎‖ × ‖𝑏‖
Example: Space of linear, bounded operators

• 𝛼 > 1/2, 𝑎 ∈ 𝒞𝛼([0, 𝑇 ],B).
• We consider the family of linear equations

𝑦𝑟,𝑡 = 1 +

∫︁ 𝑡

𝑟

𝑦𝑟,𝑠 d𝑎𝑠 , ∀𝑟6𝑡

⇒ Each 𝑦𝑟,· ∈ 𝒞𝛼([0, 𝑇 ],B) is unique (Young differential equation).
⇒ The multiplicative property is satisfied

𝑦𝑟,𝑠 · 𝑦𝑠,𝑡 = 𝑦𝑟,𝑡 , ∀𝑟6𝑠6𝑡 (MF)

{𝑦𝑠,𝑡}𝑡,𝑠 a is resolvent/propagator/semi-group



Multiplicative Young integrals
Let us set

𝑧𝑡,𝑠 =

𝑡

R
𝑠

(1 + d𝑎𝑟) := lim
|𝜋|→0

∏︁
[𝑢,𝑣 ]∈𝜋∩[𝑠,𝑡]

(1 + 𝑎𝑢,𝑣).

Remark that

|(1 + 𝑎𝑟,𝑠)(1 + 𝑎𝑠,𝑡)− (1 + 𝑎𝑟,𝑡)| = |𝑎𝑟,𝑠𝑎𝑠,𝑡 | 6 ‖𝑎‖𝛼(𝑡 − 𝑟)2𝛼.

Thanks to theMultiplicative Sewing Lemma (a variant of the Additive
Sewing Lemma), 𝑧 exists, is unique and satisfies

𝑧𝑟,𝑠 · 𝑧𝑠,𝑡 = 𝑧𝑟,𝑡 , ∀𝑟6𝑠6𝑡
|𝑧𝑠,𝑡 − 1− 𝑎𝑠,𝑡 | 6 𝐶(𝑡 − 𝑠)2𝛼.



Multiplicative Young integrals
We have 𝑦 = 𝑧 since

0 = 𝑦𝑟,𝑡 − 1−
∫︁ 𝑡

𝑟

𝑦𝑠,𝑟 d𝑎𝑠

= 𝑦𝑠,𝑟 (𝑦𝑠,𝑡 − 1− 𝑎𝑠,𝑡)−
∫︁ 𝑡

𝑠

(𝑦𝑟,𝑢 − 𝑦𝑟,𝑠) d𝑎𝑢⏟  ⏞  
|·|6𝐶(𝑡−𝑠)2𝛼

.

The solution of the linear equation 𝑦𝑟,𝑡 = 1 +
∫︀ 𝑡
𝑟
𝑦𝑟,𝑠 d𝑎𝑠 is

given by the multiplicative integral 𝑦𝑟,𝑡 =R
𝑡

𝑟
(1 + d𝑎𝑠).

Besides, 𝑦𝑟,𝑠 is invertible inB with inverse

𝑧𝑡,𝑟 = 1−
∫︁ 𝑡

𝑟

d𝑎𝑠 · 𝑧𝑠,𝑟 and 𝑧𝑡,𝑠 · 𝑧𝑠,𝑟 = 𝑧𝑡,𝑟 .



A series à la Dyson
As 𝑦𝑠,𝑠 = 1 and

𝑦𝑟,𝑡 = 1 +

∫︁ 𝑡

𝑟

𝑦𝑟,𝑢 d𝑎𝑢

= 𝑦𝑟,𝑡 + 𝑎𝑟,𝑡 +

∫︁ 𝑡

𝑟

(𝑦𝑟,𝑠 − 1) d𝑎𝑠

= 1 + 𝑎𝑟,𝑡 +

∫︁ 𝑡

𝑟

∫︁ 𝑡1

𝑟

d𝑎𝑡2 d𝑎𝑡1 +

∫︁ 𝑡

𝑟

∫︁ 𝑡1

𝑟

(𝑦𝑠,𝑡2 − 1) d𝑎𝑡2 d𝑎𝑡1

= · · ·
= infinite expansion in terms of iterated integrals of 𝑎

Using a Picard principle 𝑦 (𝑛+1)𝑟,𝑡 = 1 +
∫︀ 𝑡
𝑟
𝑦
(𝑛)
𝑟,𝑢 d𝑎𝑢 with 𝑦

(0)
𝑟,𝑡 = 1

leads to the same development.

Rem. 𝑎𝑡 = 𝑏 × 𝑡 =⇒ 𝑦𝑟,𝑡 =
∑︀

𝑘>0
1
𝑘!
𝑏𝑘(𝑡 − 𝑟)𝑘 = 𝑒𝑏(𝑡−𝑟).



A remark on the importance of time
𝐴 and 𝐵 are matrices

𝑎𝑡=
∫︀ 𝑡
0 (𝐴1[0,1](𝑠)+𝐵1[0,1](𝑠)) d𝑠

𝑎′𝑡 =

{︃
𝐴 if 𝑡 ∈ [0, 1],
𝐵 if 𝑡 ∈ [1, 2]

𝑦 ′𝑡 = 𝑦𝑡𝑎
′
𝑡 with 𝑦0 = Id

=⇒ 𝑦2 = exp(𝐴) exp(𝐵)

̂︀𝑎𝑡=∫︀ 𝑡0 (𝐵1[0,1](𝑠)+𝐴1[0,1](𝑠)) d𝑠

̂︀𝑎′𝑡 =
{︃
𝐵 if 𝑡 ∈ [0, 1],
𝐴 if 𝑡 ∈ [1, 2]̂︀𝑦 ′𝑡 = ̂︀𝑦𝑡̂︀𝑎′𝑡 with ̂︀𝑦0 = Id

=⇒ ̂︀𝑦2 = exp(𝐵) exp(𝐴)
𝐴 and 𝐵 are seen as directions. In general

exp(𝐴) exp(𝐵) = exp(𝐴 ⋆BCHD 𝐵)

̸= exp(𝐵) exp(𝐴) = exp(𝐵 ⋆BCHD 𝐴).
Alhtough 𝑎2 = ̂︀𝑎2, 𝑦2 ̸= ̂︀𝑦2: integrating linear equations is really
sensitive to the order of the successive directions.



Tensor product and tensor algebra

1. Set U = R𝑑 and {𝑒𝑖}𝑑𝑖=1 its basis.
2. Set U⊗𝑘 = U⊗ · · · ⊗ U, a tensor product of spaces.
3. Roughly speaking,U⊗𝑘 isU×· · ·×Uwith a vector space structure.

A basis is
𝑒𝐽 := 𝑒𝑖1 ⊗ · · · ⊗ 𝑒𝑖𝑘 with 𝐽 = 𝑖1 · · · 𝑖𝑘 , 𝑖𝑗 ∈ {1, . . . , 𝑑}

4. 𝐽 is a word with letters in the alphabet {1, . . . , 𝑑}.
5. The tensor algebra is T := R⊕U⊕U⊗2 ⊕ · · · , the superposition

of the tensor spaces U⊗𝑘 (with U⊗0 = R), with the addition+ and
product ⊗. It is naturally a graded space with a natural order for
the elements. It is also a Banach algebra.

6. SetT𝑘 := R⊕U⊕U⊗2⊕· · ·U⊗𝑘 , the truncation ofT up to order 𝑘
(set the other elements of 0).

7. Alternatively, elements in T are manipulated as non-commutative
series/polynomials with indeterminates 𝑒1, · · · , 𝑒𝑑 .



Chen series / signature
• Let 𝑥 ∈ 𝒞𝛼([0, 𝑇 ],R𝑑), 𝛼 > 1/2.
• Solve in the Banach algebra T the linear equation

x𝑟,𝑡 = 1 +

∫︁ 𝑡

𝑟

x𝑟,𝑠 ⊗ d𝑥𝑠 , 𝑡 > 𝑟.

⇒ The Chen series/signature is an expansion “à la Dyson”:

x𝑟,𝑡 =

+∞∑︁
𝑘=0

x
(𝑘)
𝑟,𝑡 with x

(0)
𝑟,𝑡 = 1 in R, x(1)𝑟,𝑡 = 𝑥𝑟,𝑡 in R𝑑

and x(𝑘)𝑟,𝑡 =
∑︁

𝐽 with |𝐽|=𝑘

𝑒𝐽

∫︁ 𝑡

𝑟

d𝐽𝑥𝑠

where
∫︁ 𝑡

𝑟

d𝑖1···𝑖𝑘𝑥𝑠 :=

∫︁ 𝑡

𝑟

∫︁ 𝑡1

𝑟

· · ·
∫︁ 𝑡𝑘−1

𝑟

d𝑥 𝑖𝑘𝑡𝑘 · · · d𝑥
𝑖1
𝑡1



Chen series: algebraic aspects

K.T. Chen ’50, T. Lyons & B. Hambly 2010 / The signature x𝑠,𝑡
is in one-to-one (more or less) correspondence with a path
(𝑥𝑟)𝑟∈[𝑠,𝑡] of finite variation.

Concatenation x𝑟,𝑡 = x𝑟,𝑠 ⊗ x𝑠,𝑡

Time reversal x−1𝑡,𝑟 = 1−
∫︀ 𝑡
𝑟
d𝑥𝑠 ⊗ x−1𝑠,𝑟

series inversion in T

Lie group and Lie algebra
x𝑟,𝑡 = exp (y𝑟,𝑡)

y𝑟,𝑡 =
∑︀

𝐼 𝑎𝐼
∫︀ 𝑡
𝑟
d𝐼𝑥𝑠

A geometric-algebraic dictionary

Chen series are paths with values in T (non-commutative)
x𝑡 := x0,𝑡 so that x𝑠,𝑡 = x−1𝑠 ⊗ x𝑡 .



Chen series: the second order term
Let us consider a signature x inT2 (truncated algebra up to order 2)
above a path 𝑥 ∈ 𝒞𝛼([0, 𝑇 ],R𝑑).

• x(1)𝑡 = 𝑥𝑡 : this is the path.
• x(2)𝑡 takes its values in R𝑑 ⊗ R𝑑 ≡ M𝑑×𝑑(R).
• We write

s𝑖 𝑗𝑠,𝑡 =
1

2

(︁
x
(2),𝑖 𝑗
𝑠,𝑡 + x

(2),𝑗 𝑖
𝑠,𝑡

)︁
=
1

2
𝑥 𝑖𝑠,𝑡 × 𝑥

𝑗
𝑠,𝑡 , symmetric part

a𝑖 𝑗𝑠,𝑡 =
1

2

(︁
x
(2),𝑖 𝑗
𝑠,𝑡 − x

(2),𝑗 𝑖
𝑠,𝑡

)︁
, anti-symmetric part

• The symmetric part s𝑠,𝑡 = 1
2
𝑥𝑠,𝑡 ⊗ 𝑥𝑠,𝑡 is constructed from the in-

crements 𝑥𝑠,𝑡 .
• The multiplication rule x𝑟,𝑡 = x𝑟,𝑠 ⊗ x𝑠,𝑡 implies

a𝑖 𝑗𝑟,𝑡 = a
𝑖 𝑗
𝑟,𝑠 + a

𝑖 𝑗
𝑠,𝑡 +

1

2
𝑥 𝑖𝑟,𝑠 × 𝑥

𝑗
𝑠,𝑡 −

1

2
𝑥 𝑗𝑟,𝑠 × 𝑥 𝑖𝑠,𝑡 . 𝑥𝑟 𝑥𝑡

𝑥𝑠

a stands for “Antisymmetric”, also for “Area”.



Chen series: an illustration
Let us consider the path 𝑥 with derivative

�̇�𝑡 =

{︃
𝑒1 if 𝑡 ∈ [0, 1],
𝑒2 if 𝑡 ∈ [0, 2].

Thus x(1)0,2 = 𝑥0,2 = 𝑒1 + 𝑒2 ≡ (1, 1) and

x
(2,𝑖 𝑗)
0,2 =

∫︁ 2

0

𝑥 𝑖0,𝑠 d𝑥
𝑗
0,𝑠

=⇒ x
(2)
0,2 =

1

2
𝑒1 ⊗ 𝑒1 +

1

2
𝑒2 ⊗ 𝑒2 + 𝑒1 ⊗ 𝑒2 ≡

[︂
1/2 0

1 1/2

]︂
.

The anti-symmetric part is

a1,20,2 = −a2,10,2 =
1

2
.

This is the algebraic area of the triangle (0, 0) (1, 0) (1, 1). If we
exchange the order of 𝑒1 and 𝑒2, a1,20,2[𝑒2, 𝑒1] = −1/2.



Chen series: an illustration
Alternatively, we solve x0,𝑡 = 1 +

∫︀ 𝑡
0
x0,𝑠 ⊗ d𝑥𝑠 :

For 𝑡 ∈ [0, 1] x0,𝑡 = 1 +
∫︁ 𝑡

0

x0,𝑠 ⊗ 𝑒1 = exp(𝑒1)

For 𝑡 ∈ [0, 1] x1,𝑡 = 1 +
∫︁ 𝑡

1

x1,𝑠 ⊗ 𝑒2 = exp(𝑒2).
Using the multiplicative property,

x0,2 = x0,1 ⊗ x1,2 = exp(𝑒1)⊗ exp(𝑒2)

= 1+ 𝑒1+ 𝑒2+
1

2
𝑒1⊗ 𝑒1+

1

2
𝑒2⊗ 𝑒2+ 𝑒1⊗ 𝑒2+ [deg. > 3].

Let 𝑎 be a direction such that exp(𝑎) = x0,2, then

𝑎 = log(x0,2) = 𝑥0,𝑡 + a
1,2
0,2[𝑒1, 𝑒2] + · · ·
with [𝑒1, 𝑒2] = 𝑒1 ⊗ 𝑒2 − 𝑒2 ⊗ 𝑒1.

=⇒ The signature encodes the Lévy area: moving in the Euclidean
plane creates displacement in the other directions.



What happens for irregular paths?
For a Chen series in T2 (truncated order6 2),

x𝑠,𝑡 = x
(62)
𝑠,𝑡 := 1 + x𝑠,𝑡 + x

(2)
𝑠,𝑡 , with x

(1)
𝑠,𝑡 ∈ R𝑑 , x(2)𝑠,𝑡 ∈ R𝑑 ⊗ R𝑑 .

Let us assume that we are given x(62) with 1/3 < 𝛼 6 1/2,
x
(1)
𝑠,𝑡 = 𝑥𝑠,𝑡 := 𝑥𝑡−𝑥𝑠 , |𝑥𝑠,𝑡 | 6 𝐾(𝑡−𝑠)𝛼 and |x

(2)
𝑠,𝑡 | 6 𝐾(𝑡−𝑠)2𝛼.

Could we reconstruct a whole Chen series in T?

Apply the multiplicative sewing lemma in T (not T2)

x
(62)
𝑟,𝑠,𝑡 := x

(62)
𝑟,𝑠 ⊗ x

(62)
𝑠,𝑡 − x

(62)
𝑠,𝑡

= x(1)𝑟,𝑠 ⊗ x
(2)
𝑠,𝑡 + x

(2)
𝑟,𝑠 ⊗ x

(2)
𝑠,𝑡 + x

(2)
𝑟,𝑠 ⊗ x

(1)
𝑠,𝑡 .⏟  ⏞  

only terms of order> 3

=⇒ |x(62)𝑟,𝑠,𝑡 | 6 3𝐾(𝑡 − 𝑠)3𝛼☺



The Lyons expansion theorem

T. Lyons 1998/ Knowing a path x(6𝑘) with values in T𝑘 =

R⊕ U⊕ · · · ⊕ U⊗𝑘 satisfying
x
(6𝑘,1)
𝑠,𝑡 = 𝑥𝑠,𝑡 := 𝑥𝑡 − 𝑥𝑠 with 𝑥 ∈ 𝒞𝛼([0, 𝑇 ],U),

|x(6𝑘,𝑖)𝑠,𝑡 | 6 𝐾(𝑡 − 𝑠)𝑖𝛼, 𝑖 6 𝑘,
1

𝛼
6 𝑘 + 1

is sufficient to construct a path x with values in T with
x(6𝑘,𝑖) = x(𝑖), 𝑖 6 𝑘 .
Besides, x(6𝑘) ↦→ x is continuous.

For 1/3 < 𝛼 6 1/2, we recover that the area a is a necessary but hid-
den information. Knowing the path 𝑥 itself is not sufficient unless
𝛼 > 1/2.



What is a rough path?
Def: A rough path of order 𝑘 above a path 𝑥 ∈ 𝒞𝛼([0, 𝑇 ],R𝑑) is a
path x with values in T𝑘 satisfying

x
(1)
𝑠,𝑡 = 𝑥𝑠,𝑡

|x(𝑖)𝑠,𝑡 | 6 𝐾(𝑡 − 𝑠)𝑖𝛼, 𝑖 6 𝑘,
1

𝛼
6 𝑘 + 1

1. The are an infinite number of rough path above a path 𝑥 :
y𝑠,𝑡 = x𝑠,𝑡 + 𝜑𝑡 − 𝜑𝑠 , ∀𝜑 ∈ 𝒞2𝛼([0, 𝑇 ],R𝑑 ⊗ R𝑑)

is also a rough path above 𝑥 (1/3 < 𝛼 6 1/2).
2. When 𝑥 ∈ 𝒞𝛼, 1/2 < 𝛼, Λ(𝑥)𝑡 = 1+ 𝑥𝑡 +

∫︀ 𝑡
0
𝑥0,𝑟 ⊗ d𝑥𝑟 is a rough

path in T2.
3. Rough paths x above 𝑥 ∈ 𝒞𝛼([0, 𝑇 ],R𝑑) for which there exists
𝑥𝑛 ∈ 𝒞∞([0, 𝑇 ],R𝑑) with Λ(𝑥𝑛) converges to x in 𝒞𝛽 , 𝛽 < 𝛼, are
called geometric rough paths.

4. Not all rough paths are geometric ones (Itô vs Stratonovich).



To summarize

1. A rough path is a path with values in a non-commutative, tensor
space.

2. A rough path is a natural extension of truncated Chen series/signa-
tures to irregular paths.

3. There exist an infinite number of rough paths above a given path.

4. There is no canonical way to construct a rough path above a given
path, even if there are natural ones (it is however always possible,
a non-trivial result: T. Lyons & N. Victoir 2007, J. Unterberger 2010,
M. Hairer 2013).

5. The signature translates geometric properties to algebraic ones.



— VI —
Rough Differential Equations:

The Davie’s approach



Differential equations

• 𝑥 ∈ 𝒞1([0, 𝑇 ],R𝑑)
• x = Φ(𝑥), natural lift of 𝑥
• 𝑓 = (𝑓1, . . . , 𝑓𝑑) smooth functions from R𝑑 to R𝑚.

Differential equation driven by a path

𝑦𝑡 = 𝑎 +

∫︁ 𝑡

0

𝑓 (𝑦𝑠) d𝑥𝑠 = 𝑎 +

𝑑∑︁
𝑖=1

∫︁ 𝑡

0

𝑓𝑖(𝑦𝑠) d𝑥
𝑖
𝑠 ,

𝑎, 𝑦𝑡 ∈ R𝑚.

This ODE may be thought as obtained by a “combination” of 𝑑 flows
with coefficients given by the speed �̇� 𝑖𝑡 .



Differential Equations
Newton formula=⇒ for 𝑔 ∈ 𝒞1(R𝑚,R𝑚),

𝑔𝑘(𝑦𝑡) = 𝑔
𝑘(𝑎) +

∑︁
𝑖=1,...,𝑑
𝑗=1,...,𝑚

∫︁ 𝑡

0

𝜕𝑗 𝑓
𝑗
𝑖 𝑔

𝑗(𝑦𝑠) d𝑥
𝑖
𝑠 , 𝑘=1,...,𝑚,

𝑔(𝑦𝑡) = 𝑔(𝑎) +

∫︁ 𝑡

0

𝑓 𝑔(𝑦𝑠) d𝑥𝑠

by identifying 𝑓 with a vector field: for 𝑔 ∈ 𝒞1, 𝑏 ∈ R𝑑 ,
𝑓 𝑔(𝑎) · 𝑏 :=

∑︁
𝑗=1,...,𝑚
𝑖=1,...,𝑑

𝑓 𝑗𝑖 (𝑎)𝜕𝑗𝑔(𝑎)𝑏
𝑖 .

Thus, with 𝐸 =identity,

𝑦𝑡 = 𝑎 + 𝑓 𝐸(𝑎)𝑥0,𝑡 +

∫︁ 𝑡

0

(𝑓 𝐸(𝑦𝑠)− 𝑓 𝐸(𝑎)) d𝑥𝑠

= 𝑎 + 𝑓 𝐸(𝑎)x
(1)
0,𝑡 + 𝑓 𝑓 𝐸(𝑎)x

(2)
0,𝑡 + 𝑓 𝑓 𝑓 𝐸(𝑎)x

(3)
0,𝑡 + · · ·

=⇒ The solution 𝑦𝑡 may be computed from the signature.



Rough differential equations: Davie’s approach
The development suggests to set (with 𝐸(𝑎) = 𝑎)

𝜑𝑡,𝑠(𝑎) = 𝑓
[0](𝑎) + 𝑓 [1]x

(1)
𝑠,𝑡 + 𝑓 𝑓 𝐸(𝑎)x

(2)
𝑠,𝑡

𝜓𝑡,𝑠(𝑎) = 𝑎 + 𝜑𝑡,𝑠(𝑎)

with 𝑓 [0] = 𝐸, 𝑓 [1] = 𝑓 𝐸 and 𝑓 [2] = 𝑓 𝑓 𝐸

as an approximation of 𝑦𝑡 when 𝑦𝑠 = 𝑎 and 𝑓 ∈ 𝒞1+𝛾 with bounded
derivatives, 𝛼(2 + 𝛾) > 1.
Using x(2)𝑟,𝑡 = x

(2)
𝑟,𝑠 + x

(2)
𝑠,𝑡 + x

(1)
𝑟,𝑠 ⊗ x(1)𝑠,𝑡 ,

𝜓𝑡,𝑠 ∘ 𝜓𝑠,𝑟(𝑎) =

𝜓𝑡,𝑟 (𝑎)⏞  ⏟  
𝑎 + 𝑓 [1](𝑎)x

(1)
𝑟,𝑡 + 𝑓

[2](𝑎)x
(2)
𝑟,𝑡

+ (𝑓 [2](𝜓𝑠,𝑟(𝑎))− 𝑓 [2](𝑎))x(2)𝑠,𝑡
+(𝑓 [1](𝜓𝑠,𝑟(𝑎))− 𝑓 [1](𝑎))x(1)𝑠,𝑡 − 𝑓 [2](𝑎)x(1)𝑟,𝑠 ⊗ x

(1)
𝑠,𝑡 .



Dealing with the green and red terms
Thus

|(𝑓 [2](𝜓𝑠,𝑟(𝑎))− 𝑓 [2](𝑎))x(2)𝑠,𝑡 | 6 𝐶|𝑡 − 𝑟 |(2+𝛾)𝛼. ☺

Since x(1)𝑠,𝑡 = 𝑥𝑠,𝑡 ,

|(𝑓 [1](𝜑𝑠,𝑟(𝑎))− 𝑓 [1](𝑎))x(1)𝑠,𝑡 − 𝑓 [2](𝑎)x(1)𝑟,𝑠 ⊗ x
(1)
𝑠,𝑡 |

6 |(𝑓 [1](𝑎 + 𝑓 [1](𝑎)𝑥𝑟,𝑠)− 𝑓 [1](𝑎))𝑥𝑠,𝑡 − 𝑓 [2](𝑎)𝑥𝑟,𝑠 ⊗ 𝑥𝑠,𝑡 |
+ |(𝑓 [1](𝑎 + 𝑓 [1](𝑎)𝑥𝑟,𝑠)− 𝑓 [1](𝜓𝑟,𝑠(𝑎)))𝑥𝑠,𝑡 |⏟  ⏞  

6𝐶|𝑡−𝑟 |3𝛼 ☺

It remains to control the violet term.



Dealing with the violet term
With a Taylor development,

|((𝑓 [1](𝑎 + 𝑓 [1](𝑎)𝑥𝑟,𝑠)− 𝑓 [1](𝑎))𝑥𝑠,𝑡 − 𝑓 [2](𝑎)𝑥𝑟,𝑠 ⊗ 𝑥𝑠,𝑡 |

=

⃒⃒⃒⃒∫︁ 1

0

𝑓 [1](𝑎 + 𝜏𝑓 [1](𝑎)𝑥𝑟,𝑠)𝑓
[1](𝑎)𝑥𝑟,𝑠 ⊗ 𝑥𝑠,𝑡 d𝜏 − 𝑓 [2](𝑎)𝑥𝑟,𝑠 ⊗ 𝑥𝑠,𝑡

⃒⃒⃒⃒
=

⃒⃒⃒⃒∫︁ 1

0

(𝑓 [1](𝑎 + 𝜏𝑓 [1](𝑎)𝑥𝑟,𝑠)− 𝑓 [1](𝑎))𝑓 [1](𝑎)𝑥𝑟,𝑠 ⊗ 𝑥𝑠,𝑡 d𝜏
⃒⃒⃒⃒

6 𝐾|𝑡 − 𝑟 |(2+𝛾)𝛼☺

since |𝑥𝑠,𝑡 | 6 𝐶|𝑡 − 𝑠|𝛼.

We have then proved that
|𝜓𝑡,𝑠,𝑟(𝑎)| := |𝜓𝑡,𝑠 ∘ 𝜓𝑠,𝑟(𝑎)− 𝜓𝑡,𝑟(𝑎)| 6 𝐾|𝑡 − 𝑟 |(2+𝛾)𝛼☺



RDE through the Davie approach
For a partition 𝑡𝑖 , we set the Euler scheme

𝑦𝑖+1 := 𝜓𝑖+1,𝑖(𝑦𝑖) where indice 𝑖 means 𝑡𝑖 .

For 𝑖 < 𝑗 < 𝑘 ,

𝑦𝑘 − 𝜓𝑘,𝑖(𝑦𝑖)
= 𝑦𝑘 − 𝜓𝑘,𝑗(𝑦𝑗) + 𝜓𝑘,𝑗(𝑦𝑗)− 𝜓𝑘,𝑗(𝜓𝑗,𝑖(𝑦)) + 𝜓𝑘,𝑗,𝑖(𝑦𝑖).

Thus,

𝑉𝑘,𝑖 := |𝑦𝑘 − 𝜓𝑘,𝑖(𝑦𝑖)| 6 𝑉𝑘,𝑗 + ‖𝜓𝑘,𝑗‖Lip𝑉𝑘,𝑗 +𝐾|𝑡𝑘 − 𝑡𝑖 |(2+𝛾)𝛼

A variant of the discrete additive sewing lemma shows that
|𝑦𝑘 − 𝜓𝑘,𝑖(𝑦𝑖)| 6 𝐿|𝑡𝑘 − 𝑡𝑖 |(2+𝛾)𝛼, 𝐿 is uniform in 𝜋



RDE through the Davie approach
The solution of the Euler scheme 𝑦𝑖+1 = 𝜓𝑖+1,𝑖(𝑦𝑖) satisfies

|𝑦𝑘 − 𝜓𝑘,𝑖(𝑦𝑖)| 6 𝐿|𝑡𝑘 − 𝑡𝑖 |(2+𝛾)𝛼

where 𝐿 does not depend on the partition.
With the Ascoli-Arzelà theorem, there exists 𝑦 ∈ 𝒞([0, 𝑇 ],R𝑑) s.t.

|𝑦𝑡 − 𝑦𝑠 − 𝑓 [1](𝑦𝑠)𝑥𝑠,𝑡 − 𝑓 [2](𝑦𝑠)x(2)𝑠,𝑡 | 6 𝐿|𝑡 − 𝑠|(2+𝛾)𝛼. (♣)

A.M. Davie 2010/ If 𝑓 ∈ 𝒞1+𝛾 , 𝛼(2 + 𝛾) > 1, then there
exists a path 𝑦 ∈ 𝒞𝛼([0, 𝑇 ],R𝑑) that solves (♣).
If 𝑓 ∈ 𝒞2+𝛾 , 𝛼(2 + 𝛾) > 1, then 𝑦 is unique and locally
Lipschitz continuous wrt initial point.



The Non-Linear Sewing Lemma
A general framework allows one to deal with flows, without refer-
ence to a particular approximation (I. Bailleul 2014).

A. Brault & AL, 2017/ Let𝜓𝑡,𝑠 be a family satisfying with 𝛿𝑇 →
0 as 𝑇 → 0,

‖𝜓𝑡,𝑠 − 𝐸‖∞ 6 𝛿𝑡−𝑠 , ‖𝜓𝑡,𝑠‖Lip 6 1 + 𝛿𝑡−𝑠
‖𝜓𝑡,𝑠 ∘ 𝜓𝑠,𝑟 − 𝜓𝑡,𝑟‖∞ 6 𝐶|𝑡 − 𝑟 |𝜃, 𝜃 > 1.

Then there exists a measurable flow 𝜒 satisfying
𝜒𝑡,𝑠 ∘ 𝜒𝑠,𝑟 = 𝜒𝑡,𝑟 and ‖𝜒𝑡,𝑠 − 𝜓𝑡,𝑠‖∞ 6 𝐶|𝑡 − 𝑠|𝜃.

I. Bailleul, A. Brault & AL/ Using some more stringent condi-
tions, the flow is unique and Lipschitz.



On Davie’s solution

1. When 𝑓 ∈ 𝒞1+𝛾 , the solution is not necessarily unique (A.M. Davie
2010). Counter-examples exist.

2. When 𝑓 ∈ 𝒞2+𝛾 , the rate of convergence of the Euler scheme could
be given.

3. The dichotomy the regularity 1 + 𝛾 (Cauchy-Peaono) and 2 + 𝛾
(Cauchy-Lipschitz) is “essentially” sharp.

4. There are other ways to approximate flows leading to higher order
rate of convergence
• I. Bailleul approximation by solving ODE by computing formal
logarithm

• P. Friz & N. Victoir using sub-Riemannian geodesics
5. The solution is defined as a path 𝑦 ∈ 𝒞𝛼([0, 𝑇 ],R𝑚). This solution

cannot be used as an input for another integral. This draws the line
between 𝛼 > 1/2 and 𝛼 6 1/2.



— VII —
Rough Differential Equations:

Gubinelli’s derivative



The idea of Gubinelli’s derivative
When 𝑦 is a solution in the sense of Davie of 𝑦𝑡 = 𝑎+

∫︀ 𝑡
0
𝑓 (𝑦𝑠) dx𝑠 ,

|𝑦𝑠,𝑡 − 𝑓 [1](𝑦𝑠)𝑥𝑠,𝑡 − 𝑓 [2](𝑦𝑠)x(2)𝑠,𝑡 | 6 𝐿|𝑡 − 𝑠|(2+𝛾)𝛼

with 𝑓 [1] = 𝑓 𝐸 and 𝑓 [2] = 𝑓 𝑓 𝐸 = 𝑓∇𝑓 .
We rewrite

𝑦𝑠,𝑡 = 𝑦
†
𝑠 𝑥𝑠,𝑡 + 𝑦

♯
𝑠,𝑡 with

{︃
𝑦 †𝑠 = 𝑓

[1](𝑦𝑠)

𝑦 ♯𝑠,𝑡 = 𝑓
[2](𝑦𝑠)x

(2)
𝑠,𝑡 + remain.

so that |𝑦 ♯𝑠,𝑡 | 6 𝐶|𝑡 − 𝑠|2𝛼.

Similarly to Young integrals, increments of the solu-
tions locally “look like” the one of 𝑥 .



Gubinelli’s space

Def. For 1/3 < 𝛼 6 1/2, 0 < 𝛾 6 1 and a path 𝑥 ∈ 𝒞𝛼([0, 𝑇 ],R𝑑),
the Gubinelli space is

G𝑥 =

⎧⎪⎨⎪⎩(𝑦 , 𝑦 †)
⃒⃒⃒⃒
⃒⃒⃒ 𝑦 ∈ 𝒞

𝛼([0, 𝑇 ],R𝑑)

𝑦 † ∈ 𝒞𝛼𝛾([0, 𝑇 ],L(R𝑑 ,R𝑚))
𝑦𝑠,𝑡 = 𝑦

†
𝑠 · 𝑥𝑠,𝑡 + 𝑦

♯
𝑠,𝑡 with |𝑦 ♯𝑠,𝑡 | 6 𝐶|𝑡 − 𝑠|2𝛼

⎫⎪⎬⎪⎭.
The idea is to encode both the paths and its increment wrt 𝑥 :
• 𝑦 † is the Gubinelli derivative
• 𝑦 ♯ is the remainder
The space G𝑥 has a vector space structure. It depends on 𝑥 (this
has heavy consequences).
Def. An element of G𝑥 is called a controlled rough path.



Gubinelli’s space and integration
The notion of Gubinelli’s space is convenient for integration.

M. Gubinelli 2004/ Assume 𝜃 = 𝛼(2 + 𝛾) > 1. Let x be a
rough path above 𝑥 . Let 𝑦 = (𝑦 , 𝑦 †) ∈ G𝑥 . Then∫︁ 𝑡

𝑟

𝑦
𝑠
dx𝑠 = lim

|𝜋|→0

∑︁
𝜋∩[𝑟,𝑡]

(︀
𝑦𝑢𝑥𝑢,𝑣 + 𝑦

†
𝑢x
(2)
𝑢,𝑣

)︀
is well defined and linear with respect to (𝑦 , 𝑦 †). Besides,⃒⃒⃒⃒∫︁ 𝑡

𝑟

𝑦
𝑠
dx𝑠 − 𝑦𝑟𝑥𝑟,𝑡 − 𝑦 †𝑟 x

(2)
𝑟,𝑡

⃒⃒⃒⃒
6 𝐾|𝑡 − 𝑟 |𝜃.

This linear rough integral, which is a natural expansion of the Young
integral (if 𝛼 > 1/2,

∑︀
𝑦 †𝑢x

(2)
𝑢,𝑣 disappear as |𝜋| → 0).



Gubinelli’s space and integration
Again, the existence of the rough integral is an immedіate conse-
quence of ... (surprise) ... the Additive Sewing Lemma. Set

𝑍𝑠,𝑡 = 𝑦𝑠𝑥𝑠,𝑡 + 𝑦
†
𝑠 x
(2)
𝑠,𝑡 .

Thus

𝑍𝑟,𝑠 + 𝑍𝑠,𝑡 − 𝑍𝑟,𝑡 = −𝑦 †𝑟 𝑥𝑟,𝑠 ⊗ 𝑥𝑠,𝑡 + 𝑦𝑟,𝑠𝑥𝑠,𝑡 + 𝑦 †𝑟,𝑠x
(2)
𝑠,𝑡

= 𝑦 ♯𝑟,𝑠𝑥𝑠,𝑡 + 𝑦
†
𝑟,𝑠x

(2)
𝑠,𝑡

Acutally,

|𝑦 †𝑟,𝑠x
(2)
𝑠,𝑡 | 6 𝐶|𝑡 − 𝑟 |𝛼(2+𝛾)☺

|𝑦 ♯𝑟,𝑠𝑥𝑠,𝑡 | 6 𝐶|𝑡 − 𝑟 |3𝛼☺.



The Omega lemma for Gubinelli’s space

Let 𝑦 = (𝑦 , 𝑦 †) ∈ G𝑥 and 𝑓 ∈ 𝒞1+𝛾b (R𝑑 ,R𝑚).

Using the Taylor development,

𝑓 (𝑦𝑡)− 𝑓 (𝑦𝑠) =

𝑓 (𝑦)
†
𝑡⏞  ⏟  

∇𝑓 (𝑦𝑠)𝑦 †𝑠 𝑥𝑠,𝑡

+∇𝑓 (𝑦𝑠)𝑦 ♯𝑠,𝑡 +
∫︁ 1

0

(∇𝑓 (𝑦𝑠 + 𝜏𝑦𝑠,𝑡)−∇𝑓 (𝑦𝑠))𝑦𝑠,𝑡 d𝜏⏟  ⏞  
𝑓 (𝑦)♯𝑠,𝑡



The Omega lemma for Gubinelli’s space

Omega lemma, L. Coutin & AL 2018/
When 𝑓 ∈ 𝒞1+𝛾b (R𝑑 ,R𝑚), 𝛼(1 + 𝛾) > 1, then

Ω𝑓 (𝑦) = (𝑓 (𝑦𝑡),∇𝑓 (𝑦𝑡)𝑦 †𝑡 )𝑡∈[0,𝑇 ]

maps G𝑥 to G𝑥 .

If 𝑓 ∈ 𝒞1+𝑘+𝛾b , 𝑘 > 0, then Ω𝑓 is locally in 𝒞𝑘+(1−𝜅)𝛾 up to
decreasing the regularity of the arrival space.



Consequences on RDE
We apply the same techniques as for YDE when 𝛼(2 + 𝛾) > 1.
However, 𝑓 has “one rank” of regularity more than for YDE

1. Existence (but not uniqueness) for 𝑓 ∈ 𝒞1+𝛾 .
2. Uniqueness for 𝑓 ∈ 𝒞2+𝛾 and local Hölder regularity of the solu-
tions wrt (𝑎, 𝑓 ).

3. Convergence of the Euler scheme for 𝑓 ∈ 𝒞2+𝛾 .
4. The Itô map x ↦→ 𝑦 is locally Lipschitz continuous.
5. Sensitivity wrt x is a cumbersome issue. The “direction” should be

defined.
6. When x is a geometric rough path, 𝑦 is the limit of solution of ODEs

constructed by approximations of 𝑥 .
7. Global existence (𝑇 = +∞) is also cumbersome and depends on
the notion of solution.

8. ...



To summarize (Rough case, 1/3 < 𝛼 6 1/2)
ODE RDE

“Cauchy-Peano”
existence

non uniqueness a priori
𝑓 continuous

𝑓 ∈ 𝒞1+𝛾
𝛼(2 + 𝛾) > 1

sol in G𝑥

“Cauchy-Lipschitz”
uniqueness
Lipschitz flow

conv. of Euler scheme

𝑓 Lipschitz
𝑓 ∈ 𝒞𝑘 ⇒ ℐ ∈ 𝒞𝑘

𝑓 ∈ 𝒞2+𝛾
𝛼(2 + 𝛾) > 1

⇒ℐ : G𝑥 → G𝑥
ℐ is loc. Lipschitz wrt x

𝑓 ∈ 𝒞𝑘+1+𝛾 ⇒ ℐ ∈ 𝒞𝑘+𝜖𝛾
for 𝑘 > 1 wrt (𝑎, 𝑓 ).

• This classification is essentially sharp.
• Several solutions exist unless 𝑓 ∈ 𝒞2+𝛾 (A.M. Davie 2010).
• Any solution can be lifted as a rough path/an element of G𝑥 .



Other approaches

• The original approach from T. Lyons consists in finding the fixed
point as a rough path lying above (𝑦 , 𝑥), hence constructing the
iterated integrals between 𝑦 and 𝑥 .

There is no need to compute all the iterated integrals, onemay con-
sider constructing only 𝑦 and

∫︀
𝑦 d𝑥 (AL & N. Victoir 2006).

• There are several ways to construct flows
– A.M. Davie by Euler-type approximation
– I. Bailleul by “freezing” the vector field
– P. Friz & N. Victor by using sub-Riemannian geodesics

• Approaches for SPDE work as well
– M. Hairer using regularity structures.
– M. Gubinelli, N. Perkowski & P. Imkeller using paraproducts



Application to stochastic analysis

B
(2)
𝑟,𝑡 =

∫︁ 𝑡

𝑟

(𝐵𝑠 − 𝐵𝑟)⊗ ∘ d𝐵𝑠 =⇒ RDE ≡ Stratonovich SDE

B
(2)
𝑟,𝑡 =

∫︁ 𝑡

𝑟

(𝐵𝑠 − 𝐵𝑟)⊗ d𝐵𝑠 =⇒ RDE ≡ Itô SDE.

Applied to SDE, we may
• Prove large deviation using the transfer principle by focusing
on the enhanced Brownian motion

• Prove support theorem
• Justify some Monte Carlo simulation
• Understand some limit theorems (Wong-Zakai, McShane, ho-
mogenization, ...)

Applied to fractional Brownian motion, many results known from
SDE could be extended (existence of density, ...).
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